
ECE 4007 Team FIFA FINAL REPORT

Georgia Institute of Technology School of Electrical and Computer Engineering

Single Player Foosball Table with

an Autonomous Opponent

Design and Final Report By:

� Michael Aeberhard

� Shane Connelly

� Evan Tarr

� Nardis Walker

Submitted: December 10
th

, 2007 Instructor: Dr. James Hamblen
Fall 2007 ECE 4007/L01

 Autonomous Foosball Table

Team FIFA (ECE 4007/L01) 2

Table of Contents

1. Executive Summary... 3

2. Introduction.. 4

2.1 Objective ... 4

2.2 Motivation... 4

2.3 Background ... 4

3. Project Description and Goals ... 6

4. Technical Specifications .. 8

5. Design Approach and Details .. 10

5.1 Design Overview .. 10

5.2 Image Processing Design.. 11

5.3 PC-Controller Communications.. 14

5.4 Servo Controller Board ... 16

5.4.1 Hardware Design .. 16

5.4.2 Software Design.. 20

5.5 Mechanical Design.. 24

5.6 Codes and Standards ... 26

5.7 Constraints, Alternatives, and Tradeoffs .. 28

6. Schedule, Tasks, and Milestones ... 30

7. Project Demonstration ... 33

8. Marketing and Cost Analysis... 35

8.1 Marking Analysis.. 35

8.2 Cost Analysis .. 36

9. Summary and Conclusions .. 39

10. References.. 42

Appendix A: Image Processing Source Code.. A1

Appendix B: PIC18F4520 Servo Controller Main Program and Library Source CodeB1

Appendix C: PIC21F615 PWM Controller Source Code...C1

Appendix D: Servo Controller Board Schematic and PCB Design... D1

Appendix E: Mechanical Design Drawings..E1

Appendix F: Cost Analysis ... F1

Appendix G: Prototype Development Gantt Chart .. G1

 Autonomous Foosball Table

Team FIFA (ECE 4007/L01) 3

1. Executive Summary

An automated foosball table offers a challenging player versus computer match-up in a game of

table-football (foosball). In addition to being challenging for the expert foosball player, it allows

one to play without the need of finding a formidable human opponent. Furthermore, the idea of

“man versus machine” makes an automated foosball table an interesting and fun challenge to

play against. The autonomous foosball table (AFT) falls within the same category as typical

arcade games found in entertainment centers, such as pinball, air hockey, and arcade

videogames. Currently there is no such automated foosball arcade machine in mass production;

therefore, there is an excellent opportunity to market such a product. By offering an AFT at a

competitive arcade machine price, the potential for profitability is great. This document will

examine the underlying technology used in building an AFT and prove that a challenging

computer-controlled opponent can be developed. The completed prototype plays fairly well

against an average foosball player and functions reliably, showing the potential for a finalized

table. The issues encountered which hinder the AFT were budgetary. With faster motors and

larger gears, the table would function at an advanced level with ease. After the successful

demonstration of the prototype, further development can be made to improve presentability and

gameplay mechanics for a marketable and manufacturable arcade machine.

 Autonomous Foosball Table

Team FIFA (ECE 4007/L01) 4

2. Introduction

A prototype foosball table with a robotic opponent was designed and constructed by project

engineers. An autonomous foosball table will effectively bring a fast-paced multi-player game to

lone players or teams of players.

2.1 Objective

The ultimate goal was to create an automated foosball opponent that can compete with a human

player. It is challenging, but not overly so, thereby encouraging players of all skill levels. With

this level of playability attained, it could be sold to a number of commercial locations as well as

occasional individuals. Bars, arcades, theme parks, and locations with small fun centers like

some airports and movie theaters would be interested in the product at a competitive price.

2.2 Motivation

There currently is only one AFT on the market, however, it is very expensive and has low

functionality. The goal was to develop an AFT that can be offered at a competitive arcade

machine price, and has more functionality than what is currently on the market. With a

competitive price, the AFT will be easily marketed to the customer and offer the manufacturer a

big profit.

2.3 Background

Robotic foosball tables have been created in recent years by students at a few universities, but as

of yet there have been no commercial applications. The Foosbot, a project of students at Rice

University, used a series of infrared LEDs and phototransistors to track the ball as it traversed the

table and potentiometers on the gears to track player position [1]. It is said to be undefeated, but

has yet to play against experienced foosball players. To achieve better tracking, the system will

utilize a camera above the table for tracking the ball and lateral player movement, and servos for

 Autonomous Foosball Table

Team FIFA (ECE 4007/L01) 5

accurate player rotation. KiRo, a project out of the University of Freiburg in Germany, uses a

top mounted camera as in this design and has defeated 85% of its opponents, including expert

players [2]. It, however, uses much more expensive equipment than what the proposed prototype

will use, and is thus not commercially viable.

The underlying technology of the table lies largely within three fields, each of which has vast

amounts of research available. Accurate tracking through computer vision is integral to the

success of the device, and several resources are available at Georgia Tech. The Computational

Perception Laboratory, for example, currently has a project underway to track eyes as people

approach a camera [3]. This project is a rather complex task compared to following a colored

ball, but the underlying research is vast and readily available. PIC control of the servos used to

control the players is another important aspect of the device, and another area with a great

amount of available resources. The technology has been around since the 70's and has been used

in a wide variety of projects due to its low cost and extensive collection of application notes [4].

The final field in use will be simple artificial intelligence used to decide the best strategies for

both offense and defense in a given scenario. Artificial intelligence has been applied in varying

degrees to machines for decades to accomplish goals as simple as case based reasoning in a

recommendation system, or as complex as defeating a world champion chess player [5]. All of

these combined can form a challenging and playable autonomous foosball robot.

 Autonomous Foosball Table

Team FIFA (ECE 4007/L01) 6

3. Project Description and Goals

The main project goal was to complete a working prototype for an AFT, where a human player

faces a robotic opponent. From the human perspective of the game, the foosball table is very

similar to a regular table. The player(s) on the human side are controlled via a series of four

handles that can be moved in and out and rotated to move the players linearly across the playing

field and to kick the ball towards the opponent’s goal. The autonomous side consists of:

• Eight servo motors used to manipulate the handles of the foosball table

• A microcontroller to activate the servo motors and communicate with the computer

• An over-head mounted webcam to track the ball and players

• A computer to process the webcam images, implement artificial intelligence, and

communicate with the microcontroller

The initial prototype goals were to make a simple functioning automated player to play against,

one that is at least able to defend the goal and make an effort to kick the ball toward the other

end of the table. Once a simple level of gameplay was established, the next goal was to improve

the artificial intelligence (AI) of the automated player in order to increase the challenge of the

game for the human player. The project prototype proves that an automated foosball table is

feasible and cost-effective, and that a simple level of AI can be achieved for a somewhat

challenging game to the novice foosball player. At a target price of $5,000 the table will also be

affordable to various establishments such as bars and arcades.

 Autonomous Foosball Table

Team FIFA (ECE 4007/L01) 7

Budget constraints for the prototype slowed the project some and kept its functionality to a

minimum. Proper motors to move the players at a competitive speed were found to be very

expensive, so lower-end servos had to be used. The prototype was still able to exhibit the

desired gameplay, but at an undesirable speed. Gearing the motors up to achieve faster lateral

movement was chosen, but even the gears proved to be much more expensive than allowed by

the limited budget available.

Budget constraints for the prototype slowed the project some and kept its functionality to a

minimum. Proper motors to move the players at a competitive speed were found to be very

expensive, so lower-end servos had to be used. The prototype was still able to exhibit the

desired gameplay, but at an undesirable speed. Gearing the motors up to achieve faster lateral

movement was chosen, but even the gears proved to be much more expensive than allowed by

the limited budget available.

 Autonomous Foosball Table

Team FIFA (ECE 4007/L01) 8

4. Technical Specifications

Table 1 shows the projected technical specifications versus the actual tested specifications of the

implemented automated foosball table.

Table 1. Automated foosball table technical specifications.

Item Specification Goals Demonstrated Specifications

Camera frame rate min. 60 frames per second 30 frames per second

Camera resolution min. 30 pixels per sq. in. 39.5 pixels per sq. in.

Localized ball tracking success rate 80% of frames minimum 93% of frames

Kick rate (ball velocity) up to 10 feet per second 1.5 feet per second

Lateral player speed up to 2.5 feet per second 0.77 feet per second

Lateral player position resolution at least 1 cm 0.228 mm

Move and kick success rate 75% of attempts minimum 33% of attempts

Unopposed goal rate 50% of attempts minimum 10% of attempts

Goalie blocking success rate 90% of attempts minimum 72% of attempts

Reaction time from webcam 200 ms maximum 100ms

Power requirements TBD 4.3A, 9.5V

Weight TBD 69 lbs

Table dimensions TBD 5’ x 4’ x 8’ (W x L x H)

The first issue that we ran into involved the webcam. The Phillips SPC900NC was chosen due

to its listed framerate of 90 fps and resolution of 1280x1024 pixels. Upon using it, it was

discovered that the camera used only USB 1.1 which supplies a relatively low data rate. This

only allowed the camera to capture 30 fps at 320x240 pixels. The drivers supplied by Phillips

read in this data and triple each frame and quadruple each pixel in order to achieve the listed

values. Since this internally modified data is of no use to the vision software written, the

framerate and fps used had to be lowered. The image size was still sufficient to supersede our

required resolution, and the software was able to track the ball well over our goal of 80% of

frames.

 Autonomous Foosball Table

Team FIFA (ECE 4007/L01) 9

The kicking and movement speeds achieved were well under our goals due to budget constraints.

The kicking speed can be easily increased with the purchase of faster servos. In order to increase

the lateral movement speed, we chose to gear up the AX-12 servos. What was not anticipated

was that gears of the size we needed must be custom made, and therefore have very high setup

costs. Both of these issues could be remedied in a final product with a higher budget. Without

the appropriate speed, the players could only get to their desired location if the ball was moving

very slowly, so many of the other specifications failed as well.

 Autonomous Foosball Table

Team FIFA (ECE 4007/L01) 10

5. Design Approach and Details

5.1 Design Overview

The AFT consists of six main components:

1. A standard foosball table with a playing field of 24 by 48 inches

2. Four high torque AX-12 UART controlled servos for lateral movement [6]

3. Four high speed, HS-81 PWM controlled servos for the kicking motion [7]

4. A servo control board, utilizing a PIC microcontroller for instruction processing

5. A webcam to visually acquire images of the foosball table as it is played

6. A PC to process image data, track the ball and opponent players, make intelligent

decisions of how to play, and send servo control commands to the servo control board

Figure 1 shows a basic system overview of the AFT and all of its components and

interconnections.

 Figure 1. Automated foosball table system overview.

 Autonomous Foosball Table

Team FIFA (ECE 4007/L01) 11

5.2 Image Processing Design

The image detection is done via a Philips SPC-900NC, which is a standard USB 1.1 webcam.

The webcam supports a maximum resolution of 640x480 pixels and a maximum frame rate of 30

uncompressed frames per second. Due to bandwidth problems imposed by USB1.1, the

maximum resolution and frame rate may not be achieved at the same time, as seen below in

Table 2.

Table 2. Supported frame rates and resolutions of the SPC-900NC Source: Linux PWC Wiki FAQ

 5 FPS 10 FPS 15 FPS 20 FPS 25 FPS 30 FPS
128x96 Yes Yes Yes Yes Yes Yes

160x120 Yes Yes Yes Yes Yes Yes

176x144 Yes Yes Yes Yes Yes Compressed

320x240 Yes Compressed Compressed Compressed Compressed Compressed

352x288 Yes Compressed Compressed Compressed Compressed Compressed

640x480 Compressed Compressed Compressed No No No

The implemented system runs at a compromise of 320x240 pixels at 30 compressed frames per

second. In order to accommodate the simplest algorithm and largest realized visual area, the

camera is aligned such that the y-axis (the short direction) of the table uses the 240 pixel range

while the x-axis (from goal to goal) of the table uses the 320 pixels.

To process the image data, the Java programming language was chosen. This is because the Java

Media Framework (JMF) API allows for developer-friendly commands to acquire images while

the rest of the Java platform handles high-level classes to handle image and color data [8]. By

utilizing these features, fast, effective image processing is attained. The software runs in three

stages:

1. The user selects the foosball table outline color.

 Autonomous Foosball Table

Team FIFA (ECE 4007/L01) 12

a. The playing surface is found by finding a rectangular object consisting of similar

colors to the selected color.

b. The number of pixels per square inch is calculated a posteriori by the knowledge

that a foosball table is 24x48 inches.

2. The user selects the color of the human-controlled foosball players.

a. The locations of each of the rows of players are calculated by finding the first

instance of a similar color and calculating the center of mass near that pixel.

After this is done, the distance between players on that row is calculated.

b. The table is assumed to be symmetrical about the midfield, and thus, the computer

controlled player locations are calculated by subtracting the x-axis value of each

row, in pixels from the maximum table x-axis value in pixels.

3. The user selects the color of the foosball.

a. The center of mass of the foosball is found by nearby color comparisons.

b. All future searches for the ball are localized if possible given the previous

location.

At this point, if the user reselects a color, it is assumed the user is choosing a new foosball color

to track.

The localization of the foosball is done by taking a predictive location and then searching in a 20

pixel distance in every direction. If the ball is not found, the entire table is rescanned so as to

find the ball. If, in 10 consecutive frames, the ball is not found, a goal is registered in the

direction of the side the ball was last predicted to be going into.

 Autonomous Foosball Table

Team FIFA (ECE 4007/L01) 13

 Figure 2. Java tracking graphical user interface.

In addition to tracking the ball, on every frame, the location of each of the human-controlled

players is recalculated. The graphical user interface used to visually show the tracking of the

ball and the players is shown in Figure 2 above. This is done by scanning all pixels at the x-axis

value for each row within a 5-pixel range in any direction until the top player of the row is found.

At this point, the distance between players on any given row is already known as a fixed value,

so the locations of each of the other players on the row can be quickly computed.

The overall software flow for the image processing is summarized by the software flow chart in

Figure 3 below.

 Autonomous Foosball Table

Team FIFA (ECE 4007/L01) 14

 Figure 3. Image processing software flow chart.

5.3 PC-Controller Communications

The computer is linked to the microcontroller via an RS-232 serial link. This provides an easy to

use interface with sufficient bandwidth for sending commands. The commands sent from the PC

are in the form of a 2 byte packet created specifically for the AFT.

Each packet is generated to follow the form shown in Table 3. The packet will always start with

the two most significant bits as 10. This serves to prevent the misreading of ambiguous all high

Program Start

Initialize webcam, serial communications, and predictor

User defines colors for table border, human controlled players, and ball

Dimensions of the table calculated; all players are located visually

Ball Found?

Scan entire table for ball

No

Predict the most likely position and path of the ball

Yes

Move all players ahead of the ball to intercept

Ball in robot’s control?
Kick with

controlling row

Yes

Acquire new webcam image

No

 Autonomous Foosball Table

Team FIFA (ECE 4007/L01) 15

or all low packets. The third bit establishes the function of the packet. If the packet will be

running simple servo control, the bit is set to 0. If the bit is set as 1, the packet serves some

special function as described in Table 4, where the second byte of the packet determines the

function of the command. If the packet is used for servo control, bits 3-5 are used for selecting

which of the eight servos is to be used and bits 6-15 tell the selected servo where to rotate to.

For the AX-12 servos, these ten bits indicate a physical position. For the HS-81 PWMs, the ten

bits are either all ones to raise the player 90 degrees, or all zeros to lower the player to a

downward position.

 Table 3. Packet formation for servo control.

Bits 0-1 2 3-5 6-15

Usage Reliability Packet Function Addressing Positional Data

 Table 4. Packet formation for special commands.

Second Byte Function

0x01 Center all handles

0x02 Move all handles to start position

0x03 Move all handles into kick position

0x04 Move all handles into idle position

0x05 Move offense and midfield into defend position

0x06 Move offense and midfield into idle position

On the PC end, serial communication is handled by WriteS.java which houses various functions

for generating the proper packet and then writing it to the serial port of the PC. The

microcontroller then receives the packets and converts them to servo control messages, as

described in the next section.

 Autonomous Foosball Table

Team FIFA (ECE 4007/L01) 16

5.4 Servo Controller Board

The servo controller board interprets the instruction packets across the serial connection coming

from the image processing computer. The controller then parses these instructions packets and

then carries out the proper action required to control the correct servo. There are two major parts

to the controller board design: the hardware design and the software design. The picture of the

prototype servo controller board as implemented is shown in Figure 4.

 Figure 4. Prototype servo controller board.

5.4.1 Hardware Design

The hardware design connects all of the components of the servo controller board together onto a

single printed circuit board (PCB) required to carry out the functions of communicating with the

eight servos and the image processing PC. A block diagram overview of the servo controller

board is shown in Figure 5.

 Autonomous Foosball Table

Team FIFA (ECE 4007/L01) 17

Figure 5. Servo controller board block diagram.

The main processor on the servo controller board is a Microchip PIC18F4520 microcontroller

[9]. This microcontroller has all of the features necessary to implement the required functions of

the servo controller.

The internal UART (Universal Asynchronous Receiver Transmitter) is used to directly

communicate with the AX-12 lateral motion servos at a speed of 500 kbps. The AX-12 servos

communicate on a single data bus, where receiver and transmitter function are implemented on a

single line. Therefore, external circuitry is required for the transmit and the receive pins on the

microcontroller, in order to control which function is currently connected to the common data

bus. Figure 6 shows this circuitry, as specified in the AX-12 User Manual [6].

PIC18F4520

AX-12
Servo

AX-12
Servo

AX-12
Servo

AX-12
Servo

USART

I/O Pins

PWM
Servo

PWM
Servo

PWM
Servo

PWM
Servo

SPI
MAX3100

UART
MAX232

Transiever

Image
Processing

PC

10 Mbit

500 kbps UART

115.2 kbps

SPI UART RS-232

115.2 kbps

Kicking Motion

Lateral Motion

 Autonomous Foosball Table

Team FIFA (ECE 4007/L01) 18

 Figure 6. AX-12 communication circuit. Source: AX-12 User Manual

The TXD and RXD pins are connected to the RX and TX pins on the PIC18F, and the

DIRECTION_PORT signal is connected to an output pin on the PIC18F (pin RC0 in this design).

In order to produce the pulse-width modulated signal for the PWM kicking motion servos, a

separate 8-pin PIC12F615 microcontroller is used for each PWM servo [10]. The main PIC18F

communicates with each of these PIC12F controllers through two output signals: a control signal

and a direction signal. The control signal indicates that a kicking motion is required, and the

direction signal indicates in which direction that the kicking motion should go: forwards (for

kicking) or backwards (for defending). The PIC12F controllers then interpret these signals and

produce the required PWM signal for the kicking servo.

The PIC12F615 controllers produce a 50 Hz PWM signal with a duty cycle varying between 1.0

ms and 2.0 ms. This is the standard type of signal accepted by most PWM servos on the market,

including the HS-81 servos used in this design. Table 5 shows the produced PWM signals from

the PIC12F controllers based on the input control and direction signals from the PIC18F.

 Autonomous Foosball Table

Team FIFA (ECE 4007/L01) 19

 Table 5. PIC12F615 PWM servo input/output signals.

Input Signals PWM Duty cycle PWM Period Servo Position

control = 0
direction = 0

1.5 ms 50 Hz Idle (down)

control = 1
direction = 0

2.0 ms 50 Hz Kick (forwards)

control = 1
direction = 1

1.0 ms 50 Hz Defend (backwards)

control = 0
direction = 1

Not Implemented Not Implemented Not Implemented

To communicate with the image processing PC, the PIC18F uses its internal SPI module to

communicate with an external MAX3100 SPI to UART chip. The MAX3100 simply converts a

SPI (synchronous peripheral interface) communications interface to a UART interface. It was

necessary to implement a second UART for the PC communications externally because the

PIC18F only has one internal UART module. The MAX3100 UART can be configured for

several different baud rates, but in this design a baud rate of 115.2 kbaud was used in order to

maximize the bandwidth. Refer to the MAX3100 datasheet for more information on its features

and configurations [11]. The IRQ pin from the MAX3100 is connected to the RB0/INT0 pin on

the PIC18F controller, so that a signal can be produced for the PIC18F when a new byte has

arrived from the image processing PC. The transmit and receive pins on the MAX3100 are

further connected to a MAX232 transceiver [12]. From the MAX232 transceiver, the transmit

and receive pins are wired into a standard DB9 connector to which a standard RS-232 cable can

be attached to.

The servo controller board required two different power sources: one for the microcontrollers,

and one for the servos. A separate power source is required for the servos because of their high

rate of power consumption. Separating these two sources of power protects the microcontrollers

 Autonomous Foosball Table

Team FIFA (ECE 4007/L01) 20

from being over-powered, and therefore increases reliability. Both sources of power can range

from 9.0-12V, from which a voltage regulator then produces the required 5V for the

microcontrollers and PWM servos. The AX-12s are directly connected to the high-power 9-12V

source.

As a final hardware design, a printed circuit board was design using DipTrace in order to keep

the size and complexity of the servo controller board down [13]. The resulting PCB design is

shown in Figure 7.

 Figure 7. Servo controller board PCB design.

The full schematic and a parts list required to manufacture the servo controller board can be

found in Appendix D.

5.4.2 Software Design

The PIC18F4520 source code is written in C and compiled with the Microchip C18 compiler

[14]. In addition to the main program code, two libraries were written that implemented the

 Autonomous Foosball Table

Team FIFA (ECE 4007/L01) 21

functions necessary for setting up and communicating with the AX-12 servos and the image

processing PC.

The AX-12 lateral motion servos are controlled via a bi-directional UART data bus, which is

connected to the PIC18F4520’s internal UART module. The AX-12 servos have their own

communications protocol that must be implemented in software in order to successfully

communicate with them. The most common instruction is a WRITE instruction, which writes a

value into memory to a specific AX-12 servo. The AX-12s are identified on the common data

bus by a unique ID, which is specified in the instruction. For more information on how to

implement the various instructions that are supported by the AX-12 communications protocol,

please refer to the AX-12 User Manual [6]. A special library was written to easily implement all

of the necessary functions to communicate with the AX-12 servos. Table 6 shows an overview

of these functions from the AX-12 library.

 Table 6. AX-12 library function overview.

Function Name Description

AX_SetId() Assigns a new ID to a connected AX-12 servo.

AX_Ping() Pings the connected AX-12 servos.

AX_RxByte() Receives a byte from an AX-12 servo.

AX_ByteRdy() Determines whether a byte is ready to be ready on the AX-12 data bus.

AX_TxPacket()
Sends a valid instruction packet to a connected AX-12 servo as per the AX-12
communications protocol.

AX_SendByte() Sends a single byte onto the AX-12 data bus.

AX_SetupUSART() Initializes the USART module for AX-12 communication.

The source code for the AX-12 library for the PIC18F4520 is shown in its entirety in Appendix

B.

 Autonomous Foosball Table

Team FIFA (ECE 4007/L01) 22

A second library was written for the PIC18F4520 to communicate with the MAX3100 SPI to

UART chip in order to simplify the communication code from the main program code. This

library includes functions to initialize, configure, read configuration and read/write data to the

MAX3100 chip. The source code and descriptions for the functions can be found in Appendix B.

The main program code for the PIC18F4520 listens to the image processing PC’s instruction

packets through the MAX3100 SPI to UART chip, and once an instruction is received, parses it,

and then carries out the appropriate servo function, as specified by the PC-to-Servo

Communications Protocol in Section 5.3. The main program flow for the PIC184520 is shown in

Figure 8.

 Figure 8. PIC18F4520 main program flow chart.

Initialize peripheral modules

Byte ready?

Poll MAX3100 IRQ input

First byte of
a packet?

Process/parse packet

Actuate appropriate servo

Save byte in buffer

Yes

No

No

Yes

 Autonomous Foosball Table

Team FIFA (ECE 4007/L01) 23

The initialization sets up all of the necessary required peripheral components and configures all

of the input/output ports of the PIC18F to their proper values. Once initialized, the main loop

continuously waits for a byte from the MAX3100 through the RB0/INT0 pin. Once a byte is

received, it is verified and determined if it is the first or second byte of an instruction packet. If

it’s the first byte, it is placed in a buffer and then waits for the next byte. If it is the second byte,

the instruction in the buffer is parsed, and the proper function of the instruction is carried out,

either moving a AX-12 or a PWM servo to a certain position. For more information on the

specific function of the instruction packets, refer to Section 5.3. The main program source code

is shown in its entirety in Appendix B.

The code for all of the PIC12F615 PWM controllers was written in assembly. Their programs

simply continuously monitor the control and direction pins and change the duty cycle of the

PWM module as required. The program flow for the PIC12F PWM controllers is shown in

Figure 9.

 Figure 9. PIC12F615 program flow chart.

Initialize PWM module

control = 1?

direction = 1?

Read control and direction pins

Set duty cycle = 1.0 ms

Set duty cycle = 2.0 ms

Set duty cycle = 1.5 ms

 Autonomous Foosball Table

Team FIFA (ECE 4007/L01) 24

The full assembly source code for the PIC12F615 PWM controllers is shown in Appendix C.

5.5 Mechanical Design

The table construction centers on a simple DMI Sports foosball table. Attached directly to it are

an overhead webcam mount and a side table to support the servos and circuitry. SolidWorks was

used to create a preliminary mechanical design. A photograph of the actual prototype and the

SolidWorks design are shown in Figure 10.

Figure 10. SolidWorks and actual mechanical design.

In order to fit the entire playing surface into the field of view of the webcam, it had to be placed

at least 53” above the table. A metal frame reaching 54” above the table is attached to each

corner of the table with a one foot wide medium density fiberboard (MDF) crosspiece attached,

centered over the table. This crosspiece has a 3” hole bored into its center for the webcam to

look down through. The webcam itself is attached with a #12 machine screw into its tripod

mounting hole. A small piece of wood, cut at 45 degrees, must be mounted between the MDF

and the webcam in order to yield a downward orientation.

 Autonomous Foosball Table

Team FIFA (ECE 4007/L01) 25

In order to support the servos, a table must be built extending 3 feet from the original foosball

table, two inches below the handles. The table is made of MDF, with 2”x2” legs, to maintain a

light weight while providing ample support and rigidity. On top of the side-table, underneath

each robotically controlled handle, drawer slides are mounted in order to keep the servo

assembly rigid and parallel to the extended table. The assemblies units are attached to the

drawer slides by an aluminum L-bracket. This serves to keep the servos at a constant height,

while still allowing smooth lateral motion. Alongside each slide, a nylon rack is attached, while

an accompanying 3.5” gear is mounted directly to the AX-12. The AX-12 and HS-81 servos are

mounted on opposite sides of a small piece of MDF, with the HS-81 being attached directly to a

rod holding players on the foosball table. As the AX-12 spins, it can now traverse the length of

the rack, pushing and pulling the players with it and as the HS-81 spins, the players will spin as

well. Double sided foam tape is placed between the racks and the table in order to keep the rack

in place and at the proper height. Should the racks be too low, the gear and rack will not meet

properly and slippage can occur. The SolidWorks design and the implemented design of the full

servo assemblies can be found Figure 11.

Figure 11. SolidWorks design and actual mechanical design of the servo assemblies.

 Autonomous Foosball Table

Team FIFA (ECE 4007/L01) 26

The servo controller board and PWM controller boards are also mounted directly to the top of the

extended side-table, with the necessary wiring for the assemblies run underneath the MDF.

For the complete mechanical design drawings, refer to Appendix E.

5.6 Codes and Standards

The United States Table Soccer Association outlines the rules to which a game of foosball

should be played [15]. The automated foosball table is to conform to these rules, including the

rule about not spinning the rods beyond 360 degrees. This prevents the servo motors from

turning continuously and prevents the motors from over-torque and unfair game play.

In order for the machine to function properly and safely, a final product would need to abide by

UL-22, the Underwriter Laboratories Standard for Amusement and Gaming Machines [16]. This

standard defines various aspects of the machine’s design, including the wiring and circuitry. Due

to the interactive nature of the game, it must be able to withstand the wear and tear specified by

the standard, guaranteeing a reliable product.

An example specification from the UL-22 standard that would need to be followed would be that

electrical loads can not exceed 60A at 250V. The AFT uses two different power supplies so that

the motors do not interfere with the power to the electronics. A 9V/300mA was used to power

the microcontroller and the electronics, and a 9V/4A power supply was used to power the

motors. The prototype is well below the UL-22 standard.

 Autonomous Foosball Table

Team FIFA (ECE 4007/L01) 27

The RS-232 connector standards must be followed to allow communication from the

microcontroller to the PC [17]. The receiving and transmission of data to and from the

microcontroller is controlled by pins 2 and 3, the transmit and receive pins of a standard RS-232

pinout. The RS-232 connector standards need to be followed. The AFT does not use parity or

stop bits features of the RS-232 standard.

As the baud rate is increased, the length of the RS-232 cable must be decreased in order to

maintain reliable data transfer. The maximum cable length is 50ft or a capacitance of 2500 pF.

However, at lower speeds the length of the cable can be increase. It has been know for cables

lengths to surpass 150 feet with higher quality cables. Table 7 below lists some common cable

lengths and their maximum transmission rate.

 Table 7. Typical RS-232 baud rates and maximum cable lengths.

Baud Rate Maximum Cable Length (ft)

19200 20

9600 50

2400 100

The baud rate used in the AFT is 115200 and the cable length was 5ft. This cable length allows

for reliable transmission at this baud rate.

USB 2.0 was originally intended to be used in the AFT design to meet the bandwidth

requirements of high-speed web cam data transform, but due to hardware constraints of the

purchased web cam, USB 1.1 was used instead. In order to get the maximum efficiency out of

the available bandwidth, it was necessary to careful interface with the web cam. The standards

set in the Universal Serial Bus Specifications were used [18].

 Autonomous Foosball Table

Team FIFA (ECE 4007/L01) 28

The data rate for the USB 1.1 ranges from 1.5Mbps – 12Mbps depending of the device being

used. Typically 1.5Mbps is the data rate for devices that do not require much bandwidth and

12Mbps for larger devices utilize high speed transfer.

The Java Media Framwork (JMF) was used to develop the image processing aspect of the

prototype [19]. Java Media Framework applications allow real-time images to be easily

incorporated with Java. This API (application program interface) within the program allows

users to write applications consistent with the operating environment, therefore giving the

application cross-platform compatibility.

5.7 Constraints, Alternatives, and Tradeoffs

The most significant constraint in the design and build of the autonomous foosball table is that of

funding. With a budget under $500, the supply of parts that can be purchased becomes the

primary limiting factor for building a prototype. For example, the lateral velocity could be

increased by custom machining gears with a larger radius. However, in doing so, there would be

a tooling setup cost of $1500, a cost well beyond the budget. Another constraint is to abide by

standard foosball rules, which forbids spinning of the handles. Because of this, there could not

be a continuous motor on the handles for kicking.

Other design alternatives were also considered in regards to the motion system instead of servos,

including the use of linear actuators and stepper motors. However, linear actuators provide much

less control than servos and stepper motors have an added complexity while not providing

anything other than a slightly decreased cost in addition to not having the resolution available in

 Autonomous Foosball Table

Team FIFA (ECE 4007/L01) 29

most servos. An alternative to using a computer and USB webcam would be to design all of the

software on an FPGA and then interface it directly to a CMOS or CCD camera. This would have

added increased processing and acquisition speed. However, at the onset of the design, the

specifications of the SPC-900NC webcam suggested a higher frame rate than what was actually

possible in the hardware, providing little reason to approach the problem with the FPGA and

CMOS/CCD combination.

 Autonomous Foosball Table

Team FIFA (ECE 4007/L01) 30

6. Schedule, Tasks, and Milestones

In the development phase of the prototype, it was important to maintain a schedule and

continuously readjust the schedule to meet actual development time. It was also necessary to

identify the various tasks required to complete the project, so that the work can be split up

amongst the development team, and a proper plan for component integration can be made. As a

whole, the development team was behind compared to the project schedule, but was able to make

up time through efficient communication and development towards the end of the prototype

development phase.

6.1 Schedule

The projected and actual prototype development schedules can be found in Appendix G. E-Mail

proved to be a more effective way of communicating amongst the team member in terms of

staying up-to-date with actual develop, as opposed to using the Google Calendar application.

The original schedule was designed to give the development team a month of test and revision

time, thus ensuring enough time to come up with solutions to all problems and to finalize the

design. Since the team ended up falling behind an several important aspects of the prototype

design, this month was fully utilized to complete a working prototype of the project.

6.2 Tasks

There were several components of the prototype that were isolated into tasks that could be

completed by one or more persons. The responsibility for completing each task was assigned to

specific members of the development team. Table 8 describes these tasks that were required to

complete the automated foosball table, and how many people worked on each task.

 Autonomous Foosball Table

Team FIFA (ECE 4007/L01) 31

 Table 8. Overview of the tasks that were required to complete the prototype.

Task Description Persons

Mechanical assembly Assembly of the mechanical parts required to move the handles of

the foosball table, which includes the enclosures for the electrical

components and a mounting mechanism for the ball-sensing

camera.

2

Microcontroller

development

Design and programming of the microcontroller and its circuitry

that will manage the communication between the control motors

of the foosball table and the image processing computer.

1

Image processor

development

Development of the computer software that will interpret the

images from the overhead-mounted webcam and run the necessary

processing for ball detection and path prediction.

1

Computer-controlled

communication

Design of the communications protocol between the processing

computer and the motor controller.

1

Presentation materials Development of the materials required for properly presenting the

prototype development, including the final design documents.

4

6.3 Milestones

During the development phase, there are certain milestones that needed to be achieved before

development could continue to the next phase. It was important to identify these milestones and

make sure that they are met in a timely fashion in order to keep the development of the prototype

on schedule. The important milestones and the date on which they were met are shown in Table

9.

 Table 9. Development milestones and the date that they were met.

Milestone Date Met

Preliminary parts search and selection of proper motors 8/28

Initial parts order made 9/5

Complete Proposal 9/12

Foosball table built 9/19

Basic AX-12 servo to microcontroller communication 10/3

Basic vision processing completed 10/3

Basic mechanical design completed, begin implementing 10/10

Initial mechanical assembly of 1 handle completed 10/17

 Autonomous Foosball Table

Team FIFA (ECE 4007/L01) 32

PWM to microcontroller communication 10/24

Completed PC to microcontroller communications 11/7

Webcam mounted onto foosball table 11/21

Completed assembly of all 4 handles 11/28

Final component integration and testing completed 12/6

Refer to the Gantt chart in Appendix G to get a better overview of when these milestones were

met compared to their projected date.

 Autonomous Foosball Table

Team FIFA (ECE 4007/L01) 33

7. Project Demonstration

For the technical demonstration of the project, a game of foosball was played. This exhibited

how all of the subsystems of the prototype worked together to form the completed design.

Instructions for operation of the AFT can be found in Figure 12, below. The prototype

performed well, although slower than desired. The primary failure of the AFT was that the

players moved and kicked at less than one third of what was determined necessary in the initial

technical specifications. This, in turn, caused goals to be missed in the form of scoring and

blocking success rates as well.

Testing the movement specifications was simply a matter of watching the game and using a

stopwatch to measure timing. From the distance moved and the time required to do so, a speed

was determined. Movement resolution was calculated based on the circumference of the gear

used and the fact that the servo has 1024 positions over 300 degrees of rotation. Camera frame

rate and resolution was determined by viewing the output of the webcam on the laptop. Success

rates were calculated by watching the game and dividing successes by attempts.

 Autonomous Foosball Table

Team FIFA (ECE 4007/L01) 34

Figure 12. Instructions for starting a game with the automated foosball table.

Turn on laptop and connect webcam and
serial line

Connect servo and microcontroller power
supplies at 9.5 and 9 volts, respectively

Run Track.java

Select the border of the table when prompted

Select a human controlled player when
prompted

Place the ball within the field of view of the
webcam and select it when prompted

Enter the ball into the field and play

 Autonomous Foosball Table

Team FIFA (ECE 4007/L01) 35

8. Marketing and Cost Analysis

8.1 Marking Analysis

The targeted market for an AFT is the arcade entertainment industry. While individual

customers are not likely to purchase such a foosball machine a few such sales to very active,

wealthy foosball enthusiasts, looking for a unique in-home game may be expected. However,

arcades or “fun” centers have the resources to purchase a more sophisticated form of a foosball

table to offer a variety of challenges to their customers. The following is an example list of

potential customers to which the AFT may be marketed:

• Chuck E. Cheese (http://www.chuckecheese.com/)

• Celebration Station (http://www.celebrationstation.com/)

• Malibu Grand Prix (http://www.malibugrandprix.com/)

• Dave and Busters (http://www.daveandbusters.com/)

Local bars and pubs may also be a potential market for such a foosball table, as they are also

popular entertainment locations where customers would consider playing such a game and where

similar games already exist.

In order to be successful, the foosball table must be a challenging and fun experience to the

player. Such a machine can be tailored towards the intermediate to expert foosball player who

has trouble finding a challenging human competitor. A successfully designed computer-

controlled foosball player has the potential to approach perfection and challenge any expert-level

player. Given a high expectation of victory, a computer-controlled opponent motivates an expert

player to invest in playing the game, hence the marketable appeal of an AFT. Various difficulty

 Autonomous Foosball Table

Team FIFA (ECE 4007/L01) 36

levels would also open up the marketability to the beginner-level foosball player. The marketing

appeal is strong for a game that does not require a human opponent.

Figure 13. Star Kick foosball arcade game.

Currently there is only one AFT on the market, the Star-Kick, shown in Figure 13. The Star-

Kick has its roots in a project by the School of Computer Science at the University of Freiburg in

Germany. However, the marketed arcade version of the Star-Kick is listed at a price of $27,000,

which is out of the range for smaller arcade centers and local bars [20]. The goal of the proposed

prototype is to compete with this product by improving the gameplay, and significantly lower the

cost of this unique type of arcade machine.

8.2 Cost Analysis

The final cost of an AFT should be competitive with other similar entertainment devices that the

customer would place in their facility. Such devices include pool tables, pinball machines, air

hockey, driving simulators, and arcade video games. The short list in Table 8 shows the price for

some of these typical entertainment machines.

 Autonomous Foosball Table

Team FIFA (ECE 4007/L01) 37

 Table 10. Typical entertainment machine prices. Source: ArcadeGameSuperstore

Name Description Price

NASCAR Pinball Coin-operated NASCAR-themed pinball machine (new). $4,395

Dracula Pinball Bram Stroker’s Dracula themed pinball machine (1993). $3,249

Great American Air Hockey
Table

8ft. air hockey table with electronic overhead scoring. $3,470

Bubble Hockey Machine Signature Stick Hockey bubble hockey machine. $1,245

Ford Racing Full Blown Driving arcade game based on recognizable Ford cars by
Sega.

$8,795

Dance Dance Revolution
Supernova

Arcade version of the DDR video game. 2 Players. $13,895

Golden Tee Live 2007 The latest installment of the famous Golden Tee arcade
machine.

$5,395

Great American Eagle Billiard
Table

Standard bar-quality coin-operated billiard table. $1,825

Tornado Cyclone II Foosball
Table

Typical quality human vs. human foosball table. $1,195

Average Price: $4,829

From the list in Table 10 of typical arcade machines, a targeted price range can be determined for

an AFT. The higher priced arcade machines are typically larger, more complex, and usually

have a computer opponent component; therefore it is viable to put the AFT into a similar range,

depending on the extra features that the final product may have. A realistic selling price for such

an arcade machine would fall in the price range of $5,000 - $8,000.

The cost of each unit comes out to $710 based upon the parts list in Table 11. Engineering costs,

based upon four engineers working 16 hours a week for 14 weeks at $25 per hour come to a total

of $22,400. Assuming that the AFT would sell at $5,000, a large profit can be made from such a

product. Appendix F shows the profitability of an AFT at this price, given costs for parts, cost of

labor, and the selling of 500 units. For a selling price of $5,000, a profitability of 43.2% can be

achieved, which amounts to $1,081,214 in profit.

 Autonomous Foosball Table

Team FIFA (ECE 4007/L01) 38

 Table 11. Prototype parts cost.

Item Quantity Price

DMI Foosball Table 1 $100

Phillips SPC-900NC Webcam 1 $90

AX-12 Servo 4 $40 x 4 = $160

HS-81 Servo 4 $15 x 4 = $60

Cheap Laptop 1 $100

Serial Cable, 5ft 1 $2

Power Supply 1 $50

9V DC Adapter 1 $5

PIC 18F4520 1 $20

PIC 12F615 4 $1 x 4 = $4

MAX3100 1 $6

MAX232 1 $3

Voltage Regulators 1 $6

Wiring 1 $5

Oscillators 4 $1 x 4 = $4

Assorted ICs 1 $3

MDF/lumber 1 $20

Assorted Hardware 1 $10

Drawer Slide 4 $10 x 4 = $40

Shelf Rack 6 $4.5 x 6 = $27

Total 1 $710.00

In conclusion, the market for such an arcade machine is well established, and the void for such a

unique machine gives it a great amount of selling power. Given costs of parts and labor, selling

such an arcade machine at a competitive price compared to other machines in the market allows

the manufacturer to make a substantial profit.

 Autonomous Foosball Table

Team FIFA (ECE 4007/L01) 39

9. Summary and Conclusions

The prototype has been completed and is in full operation, yet some things would have to be

changed before the design can be finalized. The biggest change would be to switch from a

computer based system to an FPGA board for central processing. This is necessitated by the

image acquisition portion of the project. As currently implemented, there is a large latency

between a visual event and the computer receiving the image of it. By using a CCD or CMOS

image sensor directly coupled to an FPGA board, the system would be capable of receiving and

processing hundreds of frames per second. These frames could be processed directly by the

hardware, with much lower limitations from software and bus latency. With a webcam linked to

a computer, latency is introduced by the webcam itself, the USB chip at both sides of the line,

the device’s drivers, and the operating system. Implementing an FPGA board would add a good

deal of complexity to the design, but it would eliminate many of those latency sources. A

suitable FPGA board would likely cost more than a cheap computer, but it would be able to

handle the duties of all of the PIC boards and allows the use of an image sensor much cheaper

than an equivalent webcam. The price of the system as a whole would remain similar to the

current projection, but due to the large change, a new prototype cycle would have to begin to

handle the alteration in system architecture and rewriting of the code.

Another major change that would be introduced if another cycle were to begin would lie with the

chosen motors. In order to achieve the speeds desired for lateral movement, gears of at least 10

inches in diameter would be needed. This would be large and expensive to implement, so

movement would likely switch to a pulley system with a high speed servo. A faster servo would

cost more, but gears would no longer be needed so the overall price should not change much.

 Autonomous Foosball Table

Team FIFA (ECE 4007/L01) 40

The speed of the kicking servos is also far too slow, so DC motors with an H-bridge and an

electric stop mechanism would be used. While the price of this system would not change much,

it does increase the complexity of the system. The electrical stop would stop the motor by

discharging the electromechanical energy stored in the motor through a series of transistors to

ground, which would only be turned on when a stop command is issued. Without it, the motor

would slow to a stop and the system would be unsure of the precise locations of the motors.

One addition to the table would be to augment the basic scoring system. While a scoring system

has been partially implemented in the prototype, it was not refined due to time constraints.

Adding a simple seven segment LED display would be inexpensive and easy to implement and

could display the current score accurately. If more time and money were devoted to this system,

a small LCD screen could be used for aesthetic appeal. A high end model could go as far as to

store user profiles and statistics.

Another modification would be to modify the predictive algorithm. In the prototype that was

implemented, a linear average of previous locations is used to predict the most likely path of the

ball. This is due to the limitations in computing power as well as the general inaccuracies

introduced in the webcam. Without a faster processing device and more real-time data, there is

little advantage to implementing a more complex prediction algorithm. However, with a FPGA

design, the acquisition and processing would not be as costly, and therefore, a Kalman filter

could be used, which would provide more accurate predictions to the future state of the ball and

players.

 Autonomous Foosball Table

Team FIFA (ECE 4007/L01) 41

While the AFT does not meet the initial design goals we had, it does operate at enough of a

capacity to serve as a proof of concept prototype. The tracking software works well, as well as

control of the servos. With a better frame rate from the camera and faster physical operation, the

game could easily be very difficult to beat. By scaling the speed of operation and prediction

algorithms, virtually any level of difficulty could be attained.

 Autonomous Foosball Table

Team FIFA (ECE 4007/L01) 42

10. References

[1] Wikipedia, :"Foosbot", 2007 [Online]. Available: http://en.wikipedia.org/wiki/Foosbot.

[Accessed: Sept. 11, 2007]

[2] University of Freiburg, "KiRo - The Table Soccer Robot", 2007 [Online]. Available:

http://www.informatik.uni-freiburg.de/~kiro/english/. [Accessed: Sept. 12, 2007]

[3] Georgia Tech's Computational Perception Laboratory, "Eye Detection and Tracking",

2007 [Online]. Available: http://www.cc.gatech.edu/cpl/projects/pupil/index.html.

[Accessed: Sept. 12, 2007]

[4] Wikipedia, "PIC Microcontroller", 2007 [Online]. Available:

http://en.wikipedia.org/wiki/PIC_microcontroller. [Accessed: Sept. 11, 2007]

[5] Association for the Advancement of Artificial Intelligence, "AI Overview", 2007

[Online]. Available: http://www.aaai.org/AITopics/html/welcome.html. [Accessed: Sept.

12, 2007]

[6] Tribotix Robotis Technical Staff, Dynamixel AX-12 User's Manual, Tribotix, Jun. 16

2006 [Online]. Available: http://www.tribotix.info/Downloads/Robotis/Dynamixels/AX-

12(english).pdf [Accessed Oct 3, 2007]

[7] Hi-Tec Technical Staff, HS-81 Micro Servo Specification, Hi-Tec [Online]. Available:

http://www.robotshop.ca/PDF/hs81.pdf [Accessed Nov. 3 2007]

[8] Java Media Framework (JMF) API, 2007 [Online] Available:

http://java.sun.com/products/java-media/jmf/ [Accessed: Oct. 1, 2007]

 Autonomous Foosball Table

Team FIFA (ECE 4007/L01) 43

[9] Microchip Technical Staff, PIC18F4520 Datasheet, Microchip, 2007 [Online].

Available: http://ww1.microchip.com/downloads/en/DeviceDoc/39631D.pdf [Accessed

Sept 20, 2007]

[10] Microchip Technical Staff, PIC12F615 Datasheet, Microchip, 2006 [Online]. Available:

http://ww1.microchip.com/downloads/en/DeviceDoc/41302A.pdf [Accessed Oct 28,

2007]

[11] Maxim IC Technical Staff, MAX3100 Datasheet, Maxim IC, Dec. 2001 [Online].

Available: http://datasheets.maxim-ic.com/en/ds/MAX3100.pdf [Accessed Oct. 15 2007]

[12] Maxim IC Technical Staff, MAX232 Datasheet, Maxim IC, Jan. 2006 [Online]. Available:

http://datasheets.maxim-ic.com/en/ds/MAX220-MAX249.pdf [Accessed Oct. 10 2007]

[13] DipTrace Homepage [Online]. Available: http://www.diptrace.com/ [Accessed Nov. 15

2007]

[14] Microchip Technical Staff, Microchip C18 Compiler User’s Guide, Micrchip, 2005

[Online]. Available:

http://ww1.microchip.com/downloads/en/DeviceDoc/C18_User_Guide_51288j.pdf

[Accessed Oct 3, 2007]

[15] United States Table Soccer Association, “USTSA Rules of Play”, 2007 [Online].

Available: http://www.foosball.com/learn/rules/ustsa/ [Accessed Sept. 14, 2007]

[16] Underwriter Laboratories, Inc., UL-22 Amusement and Gaming Machines Standard,

[Online] Available: http://ulstandardsinfonet.ul.com/scopes/scopes.asp?fn=0022.html

[Accessed Dec 2, 2007]

 Autonomous Foosball Table

Team FIFA (ECE 4007/L01) 44

[17] Electronics Industries Association, "EIA Standard RS-232-C Interface Between Data

Terminal Equipment and Data Communication Equipment Employing Serial Data

Interchange", August 1969, reprinted in Telebyte Technology Data Communication

Library, Greenlawn NY, 1985.

[18] Compaq Computer Corporation et. al., Universal Serial Bus Specification, USB

Implementers Forum, Inc., April 27, 2000 (Rev. 2.0).

[19] Sun Develpoment Network, Java Media Framework API, Sun Microsystems 2007

[Online] Available: http://java.sun.com/products/java-media/jmf/ [Accessed Oct. 10

2007]

[20] Merkur Star Kick, 2007 [Online]. Available: http://www.merkur-starkick.de/default.htm.

[Accessed: Sept. 13, 2007].

 Autonomous Foosball Table

Team FIFA (ECE 4007/L01) A1

Appendix A

Image Processing Source Code

 Autonomous Foosball Table

Team FIFA (ECE 4007/L01) A2

/**

 * AI.java

 * This class initiates a movement of a row of players to a specified location.

 *

 * @author Team FIFA, ECE4884L01, Georgia Institute of Technology

 * @version 1.0, December 2007

*/

public class AI {

 private double pixelsPerInch = 0;

 /**

 * Class constructor specifying the pixels per inch of the table.

 *

 * @param ppi The number of pixels per inch defined on the table.

 */

 public AI(double ppi) {

 pixelsPerInch = ppi;

 }

 /**

 * Uses the goalie to intercept a ball going toward the goal

 *

 * @param c The serial controller object used to send data to the servo control board

 * @param yInterceptPosition The predicted future location of the ball, given in pixels

 * from the bottom of the table.

 */

 public void goalIntercept(WriteS c, double yInterceptPosition) {

 if (yInterceptPosition != -1) {

 //we use the "- 8.75" because the hard stoppers imposed on the goalie do

not permit

 //the goalie's movement to the absolute edge of the table.

 c.move(3,(yInterceptPosition / pixelsPerInch) - 8.75);

 }

 }

 /**

 * Uses the defensemen to intercept a ball going toward the goal

 *

 * @param c The serial controller object used to send data to the servo control board

 * @param yInterceptPosition The predicted future location of the ball, given in pixels

 * from the bottom of the table.

 */

 public void defenseIntercept(WriteS c, double yInterceptPosition) {

 if (yInterceptPosition != -1) {

 c.move(2,yInterceptPosition / pixelsPerInch);

 }

 }

 /**

 * Uses the midfielders to intercept a ball going toward the goal

 *

 * @param c The serial controller object used to send data to the servo control board

 * @param yInterceptPosition The predicted future location of the ball, given in pixels

 * from the bottom of the table.

 */

 public void midfieldIntercept(WriteS c, double yInterceptPosition) {

 if (yInterceptPosition != -1) {

 c.move(1,yInterceptPosition / pixelsPerInch);

 }

 }

 /**

 * Uses the strikers to intercept a ball going toward the goal

 *

 * @param c The serial controller object used to send data to the servo control board

 * @param yInterceptPosition The predicted future location of the ball, given in pixels

 * from the bottom of the table.

 */

 public void strikerIntercept(WriteS c, double yInterceptPosition) {

 if (yInterceptPosition != -1) {

 Autonomous Foosball Table

Team FIFA (ECE 4007/L01) A3

 c.move(0,yInterceptPosition / pixelsPerInch);

 }

 }

}

 Autonomous Foosball Table

Team FIFA (ECE 4007/L01) A4

/**

 * FrameGrabber.java

 * This class is used to grab an image from the webcam. It uses an internal timeout to

prepare an image

 *

 * @author Team FIFA, ECE4884L01, Georgia Institute of Technology

 * @version 1.0, December 2007

*/

package jmfYUV;

import javax.swing.*;

import javax.swing.event.*;

import java.io.*;

import javax.media.*;

import javax.media.format.*;

import javax.media.util.*;

import javax.media.control.*;

import javax.media.protocol.*;

import java.util.*;

import java.awt.*;

import java.awt.image.*;

import java.awt.event.*;

import java.util.Properties;

import javax.swing.Timer;

public class FrameGrabber

{

 private DataSource dataSource = null;

 private Player player = null;

 private CaptureDeviceInfo di = null;

 private MediaLocator ml = null;

 private FormatControl formatControls[];

 private Buffer buf = null;

 private Image img = null;

 private VideoFormat vf = null;

 private BufferToImage btoi = null;

 private YUVFormat userFormat = null;

 private FrameGrabbingControl fgc = null;

 private boolean newFrame = false;

 private final static String DEFAULT_DEV_NAME = "v4l:Philips SPC 900NC webcam:0";

 private final static int FRAMERATE = 15;

 /**

 * Class constructor.

 */

 public FrameGrabber()

 {

 di = CaptureDeviceManager.getDevice(DEFAULT_DEV_NAME); //locate the predefined

image source

 Dimension viewSize = new Dimension(320, 240); //preset the size to 320x240 px

 Format[] cfmt = di.getFormats(); //get available formats

 for (int i = 0; i < cfmt.length; i++) {

 if (cfmt[i] instanceof YUVFormat) {

 userFormat = (YUVFormat)cfmt[i];

 Dimension d = userFormat.getSize();

 if (viewSize.equals(d)) //find the dimensional format we want

 break;

 userFormat = null;

 }

 }

 ml = di.getLocator(); //create the CaptureDeviceInfo object we want

 }

 /**

 * Grab a new frame and store it internally.

 */

 private void grabFrame() {

 fgc = (FrameGrabbingControl)

 player.getControl("javax.media.control.FrameGrabbingControl");

 buf = fgc.grabFrame(); //grab a buffer of the frame

 Autonomous Foosball Table

Team FIFA (ECE 4007/L01) A5

 // Convert it to an image

 btoi = new BufferToImage((VideoFormat)buf.getFormat());

 img = btoi.createImage(buf);

 }

 /**

 * Initialize frame grabs, calculating the internal refresh rate to grab at.

 */

 public void start() {

 try {

 dataSource = Manager.createDataSource(ml);

 dataSource.start();

 formatControls = ((CaptureDevice) dataSource).getFormatControls();

 for (int i=0; i < formatControls.length; i++) {

 System.out.println(i+":"+formatControls[i].toString());

 }

 formatControls[0].setFormat(userFormat);

 player = Manager.createRealizedPlayer(dataSource);

 player.start();

 fgc = (FrameGrabbingControl)

 player.getControl("javax.media.control.FrameGrabbingControl");

 } catch (Exception e) {}

 ActionListener grabNewFrame = new ActionListener() { //this interrupts every

second

 public void actionPerformed(ActionEvent evt) {

 grabFrame();

 newFrame = true;

 }

 };

 int framerateTimeout = (int)(1.0/(FRAMERATE * 1.0) * 1000) + 1;

 new Timer(framerateTimeout, grabNewFrame).start(); //interrupt timeout

 }

 /**

 * Public accessor for the internal image from the last grab

 *

 * @return The last grabbed image

 * @see Image

 * @see #getBufferedImage

 */

 public Image getImage() {

 newFrame = false;

 return img;

 }

 /**

 * Public accessor for the internal image from the last grab, in BufferedImage form

 *

 * @return The last grabbed image

 * @see #getImage

 */

 public BufferedImage getBufferedImage() {

 return (BufferedImage)(getImage());

 }

 /**

 * Public accessor to tell a calling class when a new image from the webcam is available

 *

 * @return A boolean indicating if a new image is available

 */

 public boolean imageAvailable() {

 return newFrame;

 }

 /**

 * Public accessor for the frame rate of the frame grabber

 */

 public int getFrameCount() {

 return FRAMERATE;

 Autonomous Foosball Table

Team FIFA (ECE 4007/L01) A6

 }

}

 Autonomous Foosball Table

Team FIFA (ECE 4007/L01) A7

/**

 * Predictor.java

 * This class is used to predict locations, determine when goals are scored, and predict y-

intercept locations of a row of players.

 * It uses a simple prediction based upon average slopes of x- and y-locations. When a goal is

scored, this class plays a

 * random audio clip depending on the most likely scorer.

 *

 * @author Team FIFA, ECE4884L01, Georgia Institute of Technology

 * @version 1.0, December 2007

*/

import java.awt.image.*;

import java.awt.*;

import sun.audio.*;

import java.io.*;

import java.util.Random;

public class Predictor {

 private int xLocation, yLocation, yFutureLoc, xFutureLoc, count;

 private int[][] lastPositions = new int[2][3]; //3 frames @ 30fps = 0.1s

 private double ballRadius = 0; //we need this to calculate bounces

 private int colorSearchSize; // "distance" to search in color space for colored objects

 private double deltaY, deltaX; //x- and y- slopes

 private boolean bottomDefenseControl = false; //this determines which defenseman should

grab control of the ball

 private int myscore = 0, oppscore = 0, lostballframes = 0; //used in scoring algorithm

 /**

 * Adds a new ball location to the stack.

 *

 * @param xloc The new x-location of the ball, in pixels

 * @param yloc the new y-location of the ball, in pixels

 * @see #clear

 */

 public void addPosition(int xloc,int yloc) {

 lostballframes = 0;

 int i;

 for (i = 0; i < 2; i++) {

 lastPositions[0][i] = lastPositions[0][i + 1];

 lastPositions[1][i] = lastPositions[1][i + 1];

 }

 lastPositions[0][2] = xloc;

 lastPositions[1][2] = yloc;

 count++;

 if (count > 2) {

 count = 3; //if we have more than 2 frames of interest, we do not care of

previous values

 }

 }

 /**

 * Predicts the goalie intercept path with the predicted y-location of the ball

 *

 * @param xpos The new x-location of the ball, in pixels

 * @return A double predicting the pixel location the goalie should go to

 * @see #findDefenseIntercept

 * @see #findMidfieldPosition

 * @see #findStrikerPosition

 */

 public double findGoalIntercept(int xpos) {

 deltaY = (lastPositions[1][0] + lastPositions[1][2]) / 2.0; //average of the last

2 y slopes ((y3 - y2) + (y2 - y1));

 return yLocation + deltaY;

 }

 /**

 * Aligns the defense to block shots by computing the angle between the ball and the goal

 *

 * @param goalXPos The x-location of the robot's goal, in pixels

 * @param rowXPos The x-location of the robot's defense line, in pixels

 * @param tableYMin The minimum y-location of the foosball table, in pixels

 Autonomous Foosball Table

Team FIFA (ECE 4007/L01) A8

 * @param tableYMax The maximum y-location of the foosball table, in pixels

 * @param playerSpacing The spacing between defensive players, in pixels

 * @return A double predicting the pixel location the defense should go to

 * @see #findGoalIntercept

 * @see #findMidfieldPosition

 * @see #findStrikerPosition

 */

 public double findDefenseIntercept(int goalXPos, int rowXPos, int tableYMin, int

tableYMax, int playerSpacing) {

 double controlZone = 0.45; //this is used as a sort of schmitt trigger, where in

the middle 10% of the table,

 //the

defensive players do not sporadically attempt to gain control of the ball

 double pixelControlZone = tableYMin + (tableYMax - tableYMin) * controlZone;

 double returnLocation = 0; //the y-location to go to

 double goalLocation = tableYMax - ((tableYMax - tableYMin) / 2);

 if (yLocation < pixelControlZone) {

 bottomDefenseControl = false;

 returnLocation = goalLocation - (goalLocation - yLocation + deltaX) /

(xLocation + deltaY - goalXPos) * (rowXPos - goalXPos) + playerSpacing;

 } else if (yLocation > (tableYMax - pixelControlZone)) {

 bottomDefenseControl = true;

 returnLocation = goalLocation + (yLocation + deltaX - goalLocation) /

(xLocation + deltaY - goalXPos) * (rowXPos - goalXPos);

 } else if (bottomDefenseControl) {

 returnLocation = 136; //go to the maximum position

 } else {

 returnLocation = 0; //go to a zero position

 }

 return returnLocation;

 }

 /**

 * Aligns the midfield to block kicks from the opponent

 *

 * @param tableYMax The maximum y-location of the foosball table, in pixels

 * @param playerSpacing The spacing between defensive players, in pixels

 * @return A double predicting the pixel location the midfield should go to

 * @see #findGoalIntercept

 * @see #findDefenseIntercept

 * @see #findStrikerPosition

 */

 public double findMidfieldPosition(int playerSpacing, int tableYMax) {

 double returnLocation = yLocation + deltaY;

 while (returnLocation < (tableYMax - playerSpacing)) {

 returnLocation += playerSpacing;

 }

 return returnLocation;

 }

 /**

 * Aligns the strikers to block kicks from the opponent

 *

 * @param tableYMax The maximum y-location of the foosball table, in pixels

 * @param playerSpacing The spacing between defensive players, in pixels

 * @return A double predicting the pixel location the strikers should go to

 * @see #findGoalIntercept

 * @see #findDefenseIntercept

 * @see #findMidfieldPosition

 */

 public double findStrikerPosition(int playerSpacing, int tableYMax) {

 double returnLocation = yLocation + deltaY;

 while (returnLocation < (tableYMax - playerSpacing)) {

 returnLocation += playerSpacing;

 }

 return returnLocation;

 }

 /**

 * Public accessor to return the last calculated y-velocity of the ball

 *

 Autonomous Foosball Table

Team FIFA (ECE 4007/L01) A9

 * @return A double representing the y-velocity of the ball, in pixels per frame

 * @see #xVelocity

 */

 public double yVelocity() {

 return deltaY;

 }

 /**

 * Public accessor to return the last calculated x-velocity of the ball

 *

 * @return A double representing the x-velocity of the ball, in pixels per frame

 * @see #xVelocity

 */

 public double xVelocity() {

 return deltaX;

 }

 /**

 * Public accessor to return the predicted x-location of the ball

 *

 * @return A double representing the predicted x-location of the ball, in pixels

 * @see #getFutureY

 * @see #getxPosition

 * @see #getyPosition

 */

 public int getFutureX() {

 return xFutureLoc;

 }

 /**

 * Public accessor to return the predicted x-location of the ball

 *

 * @return A double representing the predicted x-location of the ball, in pixels

 * @see #getFutureX

 * @see #getxPosition

 * @see #getyPosition

 */

 public int getFutureY() {

 return yFutureLoc;

 }

 /**

 * Public accessor to return the predicted x-location of the ball

 *

 * @return A double representing the last known x-location of the ball, in pixels

 * @see #getyPosition

 * @see #getFutureX

 * @see #getFutureY

 */

 public int getxPosition() {

 return xLocation;

 }

 /**

 * Public accessor to return the last known y-location of the ball

 *

 * @return A double representing the last known y-location of the ball, in pixels

 * @see #getxPosition

 * @see #getFutureX

 * @see #getFutureY

 */

 public int getyPosition() {

 return yLocation;

 }

 /**

 * Upon a lost frame, this function clears the last known positions of the ball, to avoid

making false assumptions of the velocity

 *

 * @see #addPosition

 */

 Autonomous Foosball Table

Team FIFA (ECE 4007/L01) A10

 public void clear() {

 int i;

 count = 0;

 for (i = 0; i < 3; i++) {

 lastPositions[0][i] = 0;

 lastPositions[1][i] = 0;

 }

 }

 /**

 * Upon a lost frame, this function determines whether a goal was likely scored or not.

10 missing frames of the ball indicate

 * a likely goal. If a goal is determined to be scored, play an audio clip depending on

the most likely scorer.

 */

 public void missedFrame(int tableMinX, int tableWidth) {

 String [] goodGoals = {"goal.wav", "chant.wav", "cheer.wav", "crowd.wav",

"goal2.wav", "freesoundGoal.wav", "computer_error.wav", "destroyed.wav",

"no_ordinary_machine.wav"};

 String [] badGoals = {"boo.wav", "about_time.wav", "doh.wav", "doing_my_best.wav",

"error.wav", "dah_duh_duh.wav"};

 String playfile = "";

 lostballframes++;

 if (lostballframes == 10) {

 try {

 Random randNum = new Random();;

 if (xLocation + deltaX < (tableWidth + tableMinX) / 2) { //opponent

scored

 oppscore++;

 playfile = badGoals[randNum.nextInt(badGoals.length)];

 } else { //computer scored

 playfile = goodGoals[randNum.nextInt(badGoals.length)];

 myscore++;

 }

 InputStream in = new FileInputStream("" + playfile);

 AudioStream as = new AudioStream(in);

 AudioPlayer.player.start(as); //play the audio file

 } catch (Exception e) {}

 }

 }

 /**

 * Public accessor to return the computer's score

 *

 * @return The computer's score

 */

 public int getMyScore() {

 return myscore;

 }

 /**

 * Public accessor to return the human's score

 *

 * @return The human's score

 */

 public int getOppScore() {

 return oppscore;

 }

 /**

 * Public mutator to set the ball radius

 *

 * @param br The radius of the ball, in pixels

 */

 public void setBallRadius(int br) {

 ballRadius = br;

 }

 /**

 * Sets the search size in RGB for locating objects on the table

 Autonomous Foosball Table

Team FIFA (ECE 4007/L01) A11

 *

 * @param value An integer representing the maximum value any R/G/B data can be away from

a determined color value

 */

 public void setColorSearchSize(int value) {

 colorSearchSize = value;

 }

 /**

 * This calculates the diameter of the ball being used by searching within the localized space

for similar colors

 *

 * @param x A webcam An image from the webcam

 * @param r The red pixel value of the ball

 * @param g The green pixel value of the ball

 * @param b The blue pixel value of the ball

 * @param xpos The x-position of the ball

 * @param ypos The y-position of the ball

 * @param searchDist The pixel distance to search in each direction for similar colors

 */

 public void calcBallSize(BufferedImage x, int r, int g, int b, int xpos, int ypos, int

searchDist) {

 int i, j, numpos = 0;

 for (i = xpos - searchDist; i < xpos + searchDist; i++) {

 for (j = ypos - searchDist; j < ypos + searchDist; j++) {

 Color pixel = new Color(x.getRGB(i,j));

 if (pixel.getRed() > r-colorSearchSize && pixel.getRed() <

r+colorSearchSize

 && pixel.getGreen() > g-colorSearchSize && pixel.getGreen() <

g+colorSearchSize

 && pixel.getBlue() > b-colorSearchSize && pixel.getBlue() <

b+colorSearchSize){

 numpos++;

 }

 }

 }

 //assume a round (circular) ball.

 // area = pi * r * r

 // r = sqrt(area / pi)

 ballRadius = Math.sqrt(numpos / Math.PI);

 }

 /**

 * Recalculate the most most likely position of the ball in the next frame.

 */

 public void recalculate() {

 //use y = mx + b

 if (count > 2) {

 //average of the last 2 y slopes ((y3 - y2) + (y2 - y1));

 deltaY = (lastPositions[1][1] - lastPositions[1][0] + lastPositions[1][2]

- lastPositions[1][1]) / 2.0;

 //average of the last 2 x slopes ((x3 - x2) + (x2 - x1));

 deltaX = (lastPositions[0][1] - lastPositions[0][0] + lastPositions[0][2]

- lastPositions[0][1]) / 2.0;

 yLocation = lastPositions[1][2] + (int) deltaY;

 xLocation = lastPositions[0][2] + (int) deltaX;

 yFutureLoc = yLocation + (int)(deltaY * 1.75); //There is a lag of

approximately 1.75 frames from the webcam

 xFutureLoc = xLocation + (int)(deltaX * 1.75);

 } else {

 xLocation = lastPositions[0][2];

 yLocation = lastPositions[1][2];

 yFutureLoc = yLocation;

 xFutureLoc = xLocation;

 }

 }

 /**

 * Class constructor.

 */

 Autonomous Foosball Table

Team FIFA (ECE 4007/L01) A12

 public Predictor() {

 int i;

 deltaY = deltaX = 0.0;

 for (i = 0; i < 3; i++) { //initialize all previous locations to (0,0)

 lastPositions[0][i] = 0;

 lastPositions[1][i] = 0;

 yFutureLoc = 0;

 xFutureLoc = 0;

 }

 }

}

 Autonomous Foosball Table

Team FIFA (ECE 4007/L01) A13

/**

 * Table.java

 * This class creates a virtual foosball table. It includes player information as well as

 * information on the table color and size.

 *

 * @author Team FIFA, ECE4884L01, Georgia Institute of Technology

 * @version 1.0, December 2007

*/

import java.awt.*;

import java.awt.image.*;

public class Table {

 private int colorSearchSize = 0; // "distance" to search in color space for colored

objects

 private int playerHeight = 0; // average player height, in pixels

 private int playerCount = 0; // total number of players on the board

 private int rOppColor, gOppColor, bOppColor; //opponent color

 private int rOutlineColor, gOutlineColor, bOutlineColor; //table outline color

 private int minX = 0, minY = 0, maxX = 0, maxY = 0;

 public double pixelsPerInch = 1.0; //calculated later

 boolean foundPlayers = false;

 // 4 rows, 5 items of interest per row

 // 1. Players on that row

 // 2. Distance between players on that row

 // 3. X-position of the row

 // 4. Minimum Y position

 // 5. Current Y position

 private int[][] rows = new int[4][5];

 private int[][] myrows = new int[4][5];

 /**

 * Class constructor.

 */

 public Table() {

 char i, j;

 rows[0][0] = 3; //3 players in attack row

 rows[1][0] = 5; //5 players in midfield row

 rows[2][0] = 2; //2 players in defense row

 rows[3][0] = 1; //1 player as the goalie

 for (i = 1; i < 4; i++) {

 for (j = 0; j < 4; j++) {

 rows[j][i] = 0; //initialize all locational data to 0

 myrows[j][i] = 0;

 }

 }

 for (i = 0; i < 4; i++) {

 playerCount += rows[i][0]; //count the total number of players

 myrows[i][0] = rows[i][0]; //assume a "fair" game where the computer has

the same number of players

 }

 }

 /**

 * Calculates the pixels per inch in the foosball table. A standard foosball table has a

playing surface of

 * 24 by 48 inches. Once we have the boundary as found by the picture, we can verify the

physical dimensions.

 * This data is stored internally in the "pixelsPerInch" variable

 *

 * @see #getInches

 */

 public void calcScale() {

 double wcalc = getTableWidth() / 48.0; //48 inches wide

 double hcalc = getTableHeight() / 24.0; //24 inches tall

 if (wcalc > (1.2 * hcalc) || wcalc < (0.8 * hcalc)) {

 System.out.println("Warning! Table dimensions do not agree with standard

foosball table!");

 }

 Autonomous Foosball Table

Team FIFA (ECE 4007/L01) A14

 pixelsPerInch = (wcalc + hcalc) / 2; //approximate the pixels per inch between the

height and width

 System.out.println("Found " + pixelsPerInch * pixelsPerInch + " pixels per square

inch");

 }

 /**

 * Calculates the "inch" value from a pixel value, using the getInches

 *

 * @return A double representing the physical number of inches

 * @see #calcScale

 */

 public double getInches(double p) {

 return (p / pixelsPerInch);

 }

 /**

 * Public accessor to return the average player diameter, in pixels

 *

 * @return The player cross-section "height" or diameter, in number of pixels

 */

 public int getPlayerHeight() {

 return playerHeight;

 }

 /**

 * Public accessor to return the distance between players on a given row

 *

 * @param row The row number (0-3) to return data about

 * @return The distance between the centers of each player on a row

 */

 public int getRowSpacing(int row) {

 return myrows[row][1];

 }

 /**

 * Public accessor to return the minimum y-location of a given row

 *

 * @param rownum The row number (0-3) to return data about

 * @param myPlayers A boolean representing if the data to be returned is about the

computer's players,

 * as opposed to the human's players

 * @return The minimum y-location, in pixels, of a particular row

 */

 public int getRowMinY(int rownum, boolean myPlayers) {

 int y = 0;

 if (myPlayers) {

 y = myrows[rownum-1][3];

 } else {

 y = rows[rownum-1][3];

 }

 return y;

 }

 /**

 * Public accessor to get the x-position of a given row

 *

 * @param row The row number (0-3) to set

 * @param myPlayers A boolean representing if the data to be returned is about the

computer's players,

 * as opposed to the human's players

 * @return The x-position of the row, in pixels

 */

 public int getRowXPosition(int row, boolean myPlayers) {

 int x = 0;

 if (myPlayers) {

 x = myrows[row][2];

 } else {

 x = rows[row][2];

 }

 return x;

 Autonomous Foosball Table

Team FIFA (ECE 4007/L01) A15

 }

 /**

 * Relocates all of the opponent players to track them as they move.

 *

 * @param x The image to locate the players on

 */

 public void relocate(BufferedImage x) {

 int i, j;

 if (foundPlayers) { //basic error check to ensure we CAN locate the players

 for (i = 0; i < 4; i++) { //loop through all rows

 for (j = minY; j < maxY; j++) { //start looping through all y

pixels in a specified x-position

 Color pixel = new Color(x.getRGB(rows[i][2],j));

 if (pixel.getRed() > rOppColor-colorSearchSize &&

pixel.getRed() < rOppColor+colorSearchSize

 && pixel.getGreen() > gOppColor-colorSearchSize &&

pixel.getGreen() < gOppColor+colorSearchSize

 && pixel.getBlue() > bOppColor-colorSearchSize &&

pixel.getBlue() < bOppColor+colorSearchSize){

 rows[i][4] = j; //update the new position

 break; //we only need to know the top player of a

row, because the others are fixed positions away

 }

 }

 }

 }

 }

 /**

 * Public accessor to return the minimum x-position, in pixels, of the table

 *

 * @return The minimum x-position of the table

 * @see #getMinY

 * @see #getMaxX

 * @see #getMaxY

 * @see #getTableWidth

 * @see #getTableHeight

 */

 public int getMinX() {

 return minX;

 }

 /**

 * Public accessor to return the minimum y-position, in pixels, of the table

 *

 * @return The minimum y-position of the table

 * @see #getMinX

 * @see #getMaxY

 * @see #getMaxX

 * @see #getTableWidth

 * @see #getTableHeight

 */

 public int getMinY() {

 return minY;

 }

 /**

 * Public accessor to return the maximum y-position, in pixels, of the table

 *

 * @return The maximum y-position of the table

 * @see #getMinY

 * @see #getMinX

 * @see #getMaxX

 * @see #getTableWidth

 * @see #getTableHeight

 */

 public int getMaxY() {

 return maxY;

 }

 Autonomous Foosball Table

Team FIFA (ECE 4007/L01) A16

 /**

 * Public accessor to return the maximum x-position, in pixels, of the table

 *

 * @return The maximum x-position of the table

 * @see #getMinX

 * @see #getMaxY

 * @see #getMinY

 * @see #getTableWidth

 * @see #getTableHeight

 */

 public int getMaxX() {

 return maxX;

 }

 /**

 * Public accessor to compute the width of the table, in pixels

 *

 * @return The minimum x-position subtracted from the maximum x-position of the table, in

pixels

 * @see #getMinX

 * @see #getMinY

 * @see #getMaxX

 * @see #getMaxY

 * @see #getTableHeight

 */

 public int getTableWidth() {

 return (maxX - minX);

 }

 /**

 * Public accessor to compute the height of the table, in pixels

 *

 * @return The minimum y-position subtracted from the maximum y-position of the table, in

pixels

 * @see #getMinX

 * @see #getMinY

 * @see #getMaxX

 * @see #getMaxY

 * @see #getTableWidth

 */

 public int getTableHeight() {

 return (maxY - minY);

 }

 /**

 * Public mutator to set the x-position of a given row

 *

 * @param row The row number (0-3) to set

 * @param pos The x-position, in pixels

 */

 public void setXPos(int row, int pos) {

 rows[row][2] = pos;

 }

 /**

 * Public mutator to set the minimum y-position of a given row

 *

 * @param row The row number (0-3) to set

 * @param pos The minimum y-position, in pixels

 */

 public void setTop(int row, int pos) {

 rows[row][3] = pos;

 }

 /**

 * Public accessor to get the minimum y-position of a given row

 *

 * @param row The row number (0-3) to set

 * @return The minimum y-position of the row, in pixels

 */

 public int getTop(int row) {

 Autonomous Foosball Table

Team FIFA (ECE 4007/L01) A17

 return rows[row][3];

 }

 /**

 * Sets the search size in RGB for locating objects on the table

 *

 * @param value An integer representing the maximum value any R/G/B data can be away from

a determined color value

 */

 public void setColorSearchSize(int value) {

 colorSearchSize = value;

 }

 /**

 * Draws the players onto a Graphics object

 *

 * @return The modified graphics object

 * @see Graphics

 */

 public Graphics drawPlayers(Graphics g) {

 int i,j,xpos,ypos;

 g.setColor(Color.RED); //Draw in Red

 for (i = 0; i < 4; i++) {

 xpos = rows[i][2];

 for (j = 0; j < rows[i][0]; j++) { //loop through the number of players on

a row

 ypos = rows[i][4] + j * rows[i][1] + playerHeight / 2; //compute

the y-location of each player

 g.fillOval(xpos+5,ypos+25,10,10); //draw circles over the players

 }

 }

 return g;

 }

 /**

 * Determines the row that is in control of a ball, given the x-location of that ball.

 *

 * @param x The x-location of the ball

 * @return A control row. (0-3) indicates the human's row is in control while (4-7)

indicates the robot's row is in control

 */

 public int findController(int x) {

 int i, r = 0, min = 9999;

 for (i = 0; i < 4; i++) { //loop through all rows

 if (Math.abs(rows[i][2] - x) < min) {

 min = Math.abs(rows[i][2] - x);

 r = i;

 }

 if (Math.abs(myrows[i][2] - x) < min) {

 min = Math.abs(myrows[i][2] - x);

 r = i + 4;

 }

 }

 return r;

 }

 /**

 * Locates the computer's players from data about the human's players, assuming a symmetrical

table

 */

 public void findMyPlayers() {

 int i;

 for (i = 0; i < 4; i++) {

 myrows[i][1] = rows[i][1]; //assume the same number of players on either side

 myrows[i][2] = (maxX - rows[i][2] + minX); //set the x-location of each row

 myrows[i][3] = (maxY - rows[i][3]) + minY; //set the minimum y-location of each

row

 myrows[i][4] = myrows[i][3]; //set the "current" y-location from the minimum y-

location

 }

 Autonomous Foosball Table

Team FIFA (ECE 4007/L01) A18

 }

 /**

 * Determines the location of each player row and then computes the distances between

players on that row.

 * After this is done, the robot's positions are determined, assuming a symmetrical table

 *

 * @param x An image from the webcam

 * @param mousex The x-location to analyze for color of the human players

 * @param mousey The y-location to analyze for color of the human players

 * @see #findMyPlayers

 */

 public void findRows(BufferedImage x, int mousex, int mousey) {

 x = blur(x); //blurring smoothes out color fluctuatoins

 Color pixel = new Color(x.getRGB(mousex,mousey));

 int r = pixel.getRed();

 int g = pixel.getGreen();

 int b = pixel.getBlue();

 rOppColor = r;

 gOppColor = g;

 bOppColor = b;

 /*

 // The following code works to visually locate the players. However, due to

inconsistent lighting concerns,

 // it was taken out of the final code, to be replaced with predefined values.

 int i, j, loop1, loop2, loop3, loop4, startpos, rowdist = 0, lastPlayerPos;

 int ypos = 0, xpos = 0, countpx = 0, rowcount = 0, startPlayerPos = maxY,

playerMaxPos = 0;

 for(loop1 = (int)((maxX - minX) * .2); loop1 < maxX; loop1++) {

 for(loop2 = minY; loop2 < maxY; loop2++) {

 pixel = new Color(x.getRGB(loop1,loop2));

 if (pixel.getRed() > r-colorSearchSize && pixel.getRed() <

r+colorSearchSize

 && pixel.getGreen() > g-colorSearchSize && pixel.getGreen() <

g+colorSearchSize

 && pixel.getBlue() > b-colorSearchSize && pixel.getBlue() <

b+colorSearchSize) {

 for (loop3 = loop1 - 5; loop3 < loop1 + 15; loop3++) {

 for (loop4 = loop2 - 5; loop4 < loop2 + 15; loop4++)

{

 pixel = new Color(x.getRGB(loop3,loop4));

 if (pixel.getRed() > r-colorSearchSize

 && pixel.getRed() < r+colorSearchSize

 && pixel.getGreen() > g-

colorSearchSize

 && pixel.getGreen() <

g+colorSearchSize

 && pixel.getBlue() > b-

colorSearchSize

 && pixel.getBlue() <

b+colorSearchSize) {

 if (loop4 < startPlayerPos) {

 startPlayerPos =

loop4;

 }

 if (loop4 > playerMaxPos) {

 playerMaxPos = loop4;

 }

 ypos += loop4;

 xpos += loop3;

 countpx++;

 }

 }

 }

 if (countpx > 2) {

 rows[rowcount][2] = (int) Math.floor(xpos /

countpx); //set x

 rows[rowcount][3] = startPlayerPos; //set top

System.out.println("Found player row " + rowcount + " at " + rows[rowcount][2] + ":" +

startPlayerPos);

 Autonomous Foosball Table

Team FIFA (ECE 4007/L01) A19

 playerHeight += (playerMaxPos - startPlayerPos);

 ypos = xpos = countpx = playerMaxPos = 0;

 rowcount++;

 startPlayerPos = maxY;

 loop1 += 20; //skip forward to the next row

 break; //break the vertical search

 } else {

 //false positive

 ypos = xpos = countpx = playerMaxPos = 0;

 startPlayerPos = maxY;

 }

 }

 }

 if (rowcount == 4) {

 System.out.println("Found all player rows. Moving on...");

 break; //break after we find 4 rows

 }

 }

 //find the average player height

 playerHeight = playerHeight / rowcount;

 System.out.println("Average player height: " + playerHeight + " px");

 //now, find the distance between players on the row

 for (i = 0; i < 4; i++) {

 if (rows[i][0] > 1) {

 ypos = 0;

 System.out.println("Searching for more players on row " + i + " at

xpos " + rows[i][2]);

 countpx = rowdist = 0;

 startPlayerPos = maxY;

 lastPlayerPos = rows[i][3];

 for (j = rows[i][3] + 2 * playerHeight; j < maxY; j++) {

 if (rows[i][2] >= 10) {

 startpos = -10;

 } else {

 startpos = -1 * rows[i][2];

 }

 for (int n = startpos; n <= -1 * startpos; n++) {

 pixel = new Color(x.getRGB(rows[i][2] + n,j));

 if (pixel.getRed() > r-colorSearchSize &&

pixel.getRed() < r+colorSearchSize

 && pixel.getGreen() > g-colorSearchSize &&

pixel.getGreen() < g+colorSearchSize

 && pixel.getBlue() > b-colorSearchSize &&

pixel.getBlue() < b+colorSearchSize) {

 for (loop3 = j - 5; loop3 < j + 15; loop3++)

{

 pixel = new Color(x.getRGB(rows[i][2]

+ n,loop3));

 if (pixel.getRed() > r-

colorSearchSize

 && pixel.getRed() <

r+colorSearchSize

 && pixel.getGreen() > g-

colorSearchSize

 && pixel.getGreen() <

g+colorSearchSize

 && pixel.getBlue() > b-

colorSearchSize

 && pixel.getBlue() <

b+colorSearchSize) {

 if (loop3 <

startPlayerPos) {

 startPlayerPos

= loop3;

 }

 countpx++;

 }

 }

 }

 Autonomous Foosball Table

Team FIFA (ECE 4007/L01) A20

 }

 if (countpx > 2) {

 rowdist += (startPlayerPos - lastPlayerPos);

 lastPlayerPos = startPlayerPos;

 j += playerHeight * 2;

 startPlayerPos = maxY;

 countpx = 0;

 rows[i][1] = rowdist;

 rowdist = 0;

 break;

 } else {

 countpx = 0;

 startPlayerPos = maxY;

 }

 }

 } else {

 rows[i][1] = 0;

 }

 }

 */

 //The following represents the predefined values that replaced the above code.

These values were found through

 // simple image analysis

 playerHeight = 6;

 //distance between players on the row

 rows[0][1] = 52;

 rows[1][1] = 31;

 rows[2][1] = 78;

 rows[3][1] = 0;

 //x-location data

 rows[0][2] = 98;

 rows[1][2] = 169;

 rows[2][2] = 241;

 rows[3][2] = 277;

 //y-location data

 rows[0][3] = rows[0][4] = 52;

 rows[1][3] = rows[1][4] = 52;

 rows[2][3] = rows[2][4] = 55;

 rows[3][3] = rows[3][4] = 104;

 findMyPlayers();

 foundPlayers = true;

 }

 /**

 * Finds the maximum distance any player on a row can move

 *

 * @param x An image from the webcam

 */

 public void findRange(BufferedImage x) {

 int i, j;

 for (i = 0; i < 4; i++) { //loop through all rows

 for (j = minY; j < maxY; j++) {

 Color pixel = new Color(x.getRGB(i,j));

 if (pixel.getRed() > rOppColor-colorSearchSize && pixel.getRed() <

rOppColor+colorSearchSize

 && pixel.getGreen() > gOppColor-colorSearchSize && pixel.getGreen()

< gOppColor+colorSearchSize

 && pixel.getBlue() > bOppColor-colorSearchSize && pixel.getBlue() <

bOppColor+colorSearchSize){

 rows[i][4] = rows[i][3] - j;

 break; //we only need to find the first 2 players on a row

to calculate the distance between players

 }

 }

 }

 Autonomous Foosball Table

Team FIFA (ECE 4007/L01) A21

 }

 /**

 * Finds the minimum and maximum x and y locations of the table through color analysis of the

outline

 *

 * @param x An image from the webcam

 * @param mousex The x-location to analyze for color of the table outline

 * @param mousey The y-location to analyze for color of the table outline

 */

 public void findOutline(BufferedImage x, int mousex, int mousey) {

 x = blur(x);

 Color pixel = new Color(x.getRGB(mousex, mousey));

 rOutlineColor = pixel.getRed();

 gOutlineColor = pixel.getGreen();

 bOutlineColor = pixel.getBlue();

 int i, j;

 int imHeight = x.getHeight(), imWidth = x.getWidth();

 //first, find the leftmost location of the table (minX)

 boolean found = false;

 j = imHeight / 2; //assume the table falls somewhere in the middle of the image

 for(i = 0; i < imWidth; i++) {

 pixel = new Color(x.getRGB(i,j));

 if (pixel.getRed() > rOutlineColor-colorSearchSize && pixel.getRed() <

rOutlineColor+colorSearchSize

 && pixel.getGreen() > gOutlineColor-colorSearchSize &&

pixel.getGreen() < gOutlineColor+colorSearchSize

 && pixel.getBlue() > bOutlineColor-colorSearchSize &&

pixel.getBlue() < bOutlineColor+colorSearchSize) {

 found = true;

 } else if (found) { //wait until we fall off the outline to assign the

location

 minX = i;

 break;

 }

 }

 //then, find the rightmost location of the table (maxX)

 found = false;

 for(i = imWidth - 1; i > 0; i--) {

 pixel = new Color(x.getRGB(i,j));

 if (pixel.getRed() > rOutlineColor-colorSearchSize && pixel.getRed() <

rOutlineColor+colorSearchSize

 && pixel.getGreen() > gOutlineColor-colorSearchSize &&

pixel.getGreen() < gOutlineColor+colorSearchSize

 && pixel.getBlue() > bOutlineColor-colorSearchSize &&

pixel.getBlue() < bOutlineColor+colorSearchSize) {

 found = true;

 } else if (found) { //wait until we fall off the outline to assign the

location

 maxX = i;

 break;

 }

 }

 //then, find the topmost location of the table (minY)

 found = false;

 i = imWidth / 2; //assume the table falls somewhere in the middle of the image

 for(j = 0; j < imHeight; j++) {

 pixel = new Color(x.getRGB(i,j));

 if (pixel.getRed() > rOutlineColor-colorSearchSize && pixel.getRed() <

rOutlineColor+colorSearchSize

 && pixel.getGreen() > gOutlineColor-colorSearchSize &&

pixel.getGreen() < gOutlineColor+colorSearchSize

 && pixel.getBlue() > bOutlineColor-colorSearchSize &&

pixel.getBlue() < bOutlineColor+colorSearchSize) {

 found = true;

 } else if (found) { //wait until we fall off the outline to assign the

location

 minY = j;

 Autonomous Foosball Table

Team FIFA (ECE 4007/L01) A22

 break;

 }

 }

 //finally, find the bottommost location of the table (maxY)

 found = false;

 for(j = imHeight-1; j > 0; j--) {

 pixel = new Color(x.getRGB(i,j));

 if (pixel.getRed() > rOutlineColor-colorSearchSize && pixel.getRed() <

rOutlineColor+colorSearchSize

 && pixel.getGreen() > gOutlineColor-colorSearchSize &&

pixel.getGreen() < gOutlineColor+colorSearchSize

 && pixel.getBlue() > bOutlineColor-colorSearchSize &&

pixel.getBlue() < bOutlineColor+colorSearchSize) {

 found = true;

 } else if (found) { //wait until we fall off the outline to assign the

location

 maxY = j;

 break;

 }

 }

 System.out.println("Found outline: x(" + minX + "-" + maxX + "), y(" + minY + "-"

+ maxY + ")");

 }

 /**

 * Computes a blurred image, blurring 1 pixel in each direction

 *

 * @param x An image to blur

 * @return The blurred image

 * @see BufferedImage

 */

 public BufferedImage blur(BufferedImage x) {

 int blurWidth = 1;

 int w = x.getWidth();

 int h = x.getHeight();

 int i, j, r=0, g=0, b=0, p, q;

 int blursize = (2 * blurWidth + 1) * (2 * blurWidth + 1);

 BufferedImage res = new BufferedImage(w,h,BufferedImage.TYPE_INT_RGB);

 for (i = blurWidth; i < w-blurWidth; i++) {

 for (j = blurWidth; j < h-blurWidth; j++)

 r = g = b = 0;

 for (p = -1 * blurWidth; p <= blurWidth; p++) { //blur 1 px left

and right

 for (q = -1 * blurWidth; q <= blurWidth; q++) {{ //blur 1

px up and down

 Color c = new Color(x.getRGB(i + p, j + q));

 r += c.getRed();

 g += c.getGreen();

 b += c.getBlue();

 }

 }

 Color n = new Color(r/blursize, g/blursize, b/blursize); //average

all the pixels in the region

 res.setRGB(i,j,n.getRGB()); //assign the new value to the created

image

 }

 }

 return res;

 }

}

 Autonomous Foosball Table

Team FIFA (ECE 4007/L01) A23

/**

 * Track.java

 * This class is the main control class to all the foosball files. It initiates all the required

objects from assistant classes

 * (AI, FrameGrabber, Predictor, Table, and WriteS). It tracks the foosball via a limited search

space on every frame, checking

 * the FrameGrabber object for whenever a new image is available. It also initiates a GUI to

draw the location of the ball as

 * well as crosshairs over the ball.

 *

 * @author Team FIFA, ECE4884L01, Georgia Institute of Technology

 * @version 1.0, December 2007

*/

import java.awt.*;

import java.awt.event.*;

import java.awt.image.*;

import javax.swing.Timer;

import jmfYUV.*;

public class Track extends Frame {

 private BufferedImage image1; //the last image from the webcam

 private FrameGrabber vision1; //the image acquiring object

 private int xloc, yloc, imHeight, imWidth, framecount = 0, FPS = 0;

 private float camFrameRate; //the frame rate we're acquiring at

 private int rBallColor, gBallColor, bBallColor; //ball colors

 private int rOppColor, gOppColor, bOppColor; //opponent colors

 private int colorSearchSize = 20; //colors within this RGB distance will be matched

 private int searchSize = 20; //number of pixels to look for the ball in each direction

 private boolean found; //boolean indicating if the ball is found

 private int stage = 0;

 private Predictor p = new Predictor();

 private Table t = new Table();

 private WriteS c = new WriteS();

 private AI a;

 /**

 * Delay the main process for 2 milliseconds

 */

 public void sleep() {

 try {

 Thread.sleep(2);

 } catch(Exception e) {

 System.out.println("Error");

 }

 }

 /**

 * Redraw everything in the GUI

 *

 * @param g The graphics object to draw on

 */

 public void paint(Graphics g) {

 int xline, yline;

 g.drawImage(image1, 10, 30, this); //first, add the last webcam image

 if (stage > 0) {

 g.setColor(Color.BLUE); //draw the table's bounding box

 g.drawRect(t.getMinX() + 10, t.getMinY() + 30, t.getTableWidth(),

t.getTableHeight());

 }

 if (stage > 2) {

 g = t.drawPlayers(g); //draw the human's players

 }

 if (found) {

 //draw the crosshairs

 xline = 10 + xloc;

 yline = 30 + yloc;

 g.setColor(Color.GREEN);

 g.drawLine(xline,30,xline,imHeight + 30);

 Autonomous Foosball Table

Team FIFA (ECE 4007/L01) A24

 g.drawLine(10,yline,imWidth + 10,yline);

 g.drawRect(xline - searchSize, yline - searchSize, searchSize * 2,

searchSize * 2);

 //write the text under the image

 g.setColor(Color.BLACK);

 g.clearRect(0,imHeight + 30,imWidth + 10,60); //clear out the old text

 g.drawString("Current position: " + xloc + ":" + yloc,10,imHeight + 45);

 } else {

 //write the text under the image

 g.setColor(Color.BLACK);

 g.clearRect(0,imHeight + 30,imWidth + 10,60); //clear out the old text

 g.drawString("Could not locate ball",10,imHeight + 45);

 }

 g.drawString("Processing: " + FPS + " FPS",10,imHeight + 60);

 g.drawString("Camera providing: " + camFrameRate + " FPS",10,imHeight + 75);

 g.drawString("My Score: " + p.getMyScore() + ". Your score: " +

p.getOppScore(),10,imHeight+90);

 }

 /**

 * Repaint the graphics on a GUI update

 *

 * @param g The graphics object to draw on

 */

 public void update(Graphics g) {

 paint(g);

 }

 /*

 * Listen for window closes. If one occurs, return all players to their center position

and set them down, then

 * disconnect the controller and exit the program

 */

 class WindowListener extends WindowAdapter {

 public void windowClosing(WindowEvent e) {

 c.centerAll();

 c.setAllDown();

 c.disconnect();

 System.exit(0);

 }

 }

 /**

 * Constructor for the Track class.

 */

 public Track() {

 c.setAllUp(); //lift all players temporarily

 try {

 Thread.sleep(250);

 } catch(Exception e) {

 System.out.println("Thread timing error");

 }

 c.setAllDown(); //set all players back down

 try {

 Thread.sleep(250);

 } catch(Exception e) {

 System.out.println("Thread timing error");

 }

 c.startPosition(); //move all rows against the wall

 found = false; //start up without the ball found

 //predefined colors for the ball. we overwrite these

 rBallColor = 200;

 gBallColor = 200;

 bBallColor = 20;

 xloc = yloc = framecount = 0;

 //set up the webcam controller and grab a new image

 vision1 = new FrameGrabber();

 Autonomous Foosball Table

Team FIFA (ECE 4007/L01) A25

 vision1.start();

 image1 = vision1.getBufferedImage();

 imHeight = 240;

 imWidth = 320;

 //define the GUI controls and setup

 addWindowListener(new WindowListener());

 setTitle("Foosball Tracking");

 setSize(imWidth + 10,imHeight + 105); //set window size

 setVisible(true); //make the window visible

 addMouseListener (new CalcPixel());

 findBall(image1);

 ActionListener secondElapse = new ActionListener() { //this interrupts every

second

 public void actionPerformed(ActionEvent evt) {

 repaint(); //show the data we have every second

 FPS = framecount;

 camFrameRate = vision1.getFrameCount();

 framecount = 0;

 }

 };

 new Timer(1000, secondElapse).start(); //interrupt every second

 while(true) {

 framecount++;

 if (vision1.imageAvailable()) {

 image1 = vision1.getBufferedImage(); //grab an image

 t.relocate(image1); //find the new human players' locations

 findBall(image1); //find the ball

 if (stage > 2) { //we've located the players

 int controlrow = t.findController(p.getFutureX()); //find

which row is most likely to control the ball next time

 if (p.getFutureX() <= t.getRowXPosition(1,true)) { //ball

behind midfield

 if (c.getRaised(1) == false || c.getRaised(0) ==

false) {

 c.setOffenseUp();

 sleep(); //artificially delay the next

command

 }

 } else if (p.getFutureX() > t.getRowXPosition(0,true)) {

//ball ahead of strikers

 a.strikerIntercept(c,t.getMaxY()-

p.findStrikerPosition(t.getRowSpacing(0), t.getMaxY()) - t.getPlayerHeight());

 if (c.getRaised(0) == true || c.getRaised(1) ==

true) {

 c.setOffenseDown();

 sleep(); //artificially delay the next

command

 }

 } else if (p.getFutureX() <= t.getRowXPosition(0,true)) {

//ball behind strikers

 a.midfieldIntercept(c,t.getMaxY()-

p.findMidfieldPosition(t.getRowSpacing(1), t.getMaxY()) - t.getPlayerHeight());

 if (c.getRaised(0) == false) {

 c.setUp(0);

 sleep(); //artificially delay the next

command

 }

 if (c.getRaised(1) == true) {

 c.setDown(1);

 sleep(); //artificially delay the next

command

 }

 }

 //kick players if they have control of the ball

 Autonomous Foosball Table

Team FIFA (ECE 4007/L01) A26

 if (controlrow == 7 && p.getFutureX() >=

t.getRowXPosition(3,true)) {

 c.kick(3);

 } else if (controlrow == 6 && p.getFutureX() >=

t.getRowXPosition(2,true)) {

 c.kick(2);

 } else if (controlrow == 5 && p.getFutureX() >=

t.getRowXPosition(1,true)) {

 c.kick(1);

 } else if (controlrow == 4 && p.getxPosition() >=

t.getRowXPosition(0,true)) {

 c.kick(0);

 }

 //always move the defense and goalie to intercept

 double gi = t.getMaxY()-

p.findGoalIntercept(t.getRowXPosition(3,true))- t.getPlayerHeight();

 a.goalIntercept(c,gi);

 double di = t.getMaxY()-p.findDefenseIntercept(t.getMinX(),

t.getRowXPosition(2,true), t.getMinY(), t.getMaxY(), t.getRowSpacing(2)) - t.getPlayerHeight();

 try {

 Thread.sleep(2); //artificially delay the next

command

 } catch(Exception e) {

 System.out.println("Error");

 }

 a.defenseIntercept(c,di);

 }

 }

 //sleep for 1 ms to check the next frame

 try {

 Thread.sleep(1);

 } catch(Exception e) {

 System.out.println("Error");

 }

 }

 }

 /**

 * Finds the current location of the ball. Limits the search to a window about the

predicted location

 *

 * @param x The most recent webcam capture

 */

 private void findBall(BufferedImage x) {

 int xpos, ypos, numpos, xlower, xupper, ylower, yupper;

 xpos = ypos = numpos = 0;

 if (found) { //ball was found on last frame, localize the search

 p.recalculate(); //try to find the new positions

 xlower = p.getxPosition() - searchSize;

 xupper = p.getxPosition() + searchSize;

 ylower = p.getyPosition() - searchSize;

 yupper = p.getyPosition() + searchSize;

 if (xlower < t.getMinX()) { //make sure we're only looking on the table

 xlower = t.getMinX();

 } else if (xupper >= (t.getMinX() + t.getTableWidth())) {

 xupper = t.getMinX() + t.getTableWidth();

 }

 if (ylower < t.getMinY()) { //make sure we're only looking on the table

 ylower = t.getMinY();

 } else if (yupper >= (t.getMinY() + t.getTableHeight())) {

 yupper = t.getMinY() + t.getTableHeight();

 }

 } else { //default to searching the entire image space. computationally expensive

 xlower = t.getMinX();

 ylower = t.getMinY();

 xupper = t.getMinX() + t.getTableWidth();

 yupper = t.getMinY() + t.getTableHeight();

 }

 Autonomous Foosball Table

Team FIFA (ECE 4007/L01) A27

 for(int loop1 = xlower; loop1 < xupper; loop1++) {

 for(int loop2 = ylower; loop2 < yupper; loop2++) {

 Color pixel = new Color(x.getRGB(loop1,loop2));

 if (pixel.getRed() > rBallColor-colorSearchSize && pixel.getRed() <

rBallColor+colorSearchSize

 && pixel.getGreen() > gBallColor-colorSearchSize &&

pixel.getGreen() < gBallColor+colorSearchSize

 && pixel.getBlue() > bBallColor - colorSearchSize &&

pixel.getBlue() < bBallColor+colorSearchSize){

 xpos += loop1;

 ypos += loop2;

 numpos++; //count the number of pixels in the area near in

the color search space

 }

 }

 }

 if (numpos > 0) { //ensure we found the image

 //calculate the center of mass

 xloc = xpos / numpos;

 yloc = ypos / numpos;

 found = true;

 p.addPosition(xloc,yloc); //add the new location to the predictor

 } else {

 if (found) {

 p.clear(); //clear out old locations in the predictor

 }

 if (stage > 3) {

 p.missedFrame(t.getMinX(), t.getTableWidth()); //see if we need to

register a goal

 }

 found = false;

 }

 }

 /**

 * This starts a new instance of our class

 */

 public static void main(String[] args) {

 System.out.println("Click the outline of the table to begin");

 new Track();

 }

 /*

 * This processes mouse events within the window

 */

 private class CalcPixel extends MouseAdapter {

 public void mouseClicked(MouseEvent event) {

 //grab the x and y location of the click

 int mousex = event.getPoint().x;

 int mousey = event.getPoint().y;

 if (mousex > 10 && mousey > 30 && mousex < (imWidth + 10) && mousey <

(imHeight + 30)) {

 Color pixel = new Color(image1.getRGB(mousex-10,mousey-30));

 switch (stage) {

 case 0: //the user selected the table outline color

 t.setColorSearchSize(colorSearchSize * 2);

 t.findOutline(image1, mousex-10, mousey-30);

 if (t.getTableWidth() > 20 && t.getTableHeight() > 20) {

 stage++;

 t.calcScale();

 a = new AI(t.pixelsPerInch);

 System.out.println("Table found. Please pull all

opponent players as far out as possible and click one to begin.");

 } else {

 System.out.println("Not a large enough table area

("+pixel.getRed()+","+pixel.getGreen()+","+pixel.getBlue()+") Click the outline again.");

 }

 break;

 case 1: //the user selected the player color

 rOppColor = pixel.getRed();

 Autonomous Foosball Table

Team FIFA (ECE 4007/L01) A28

 gOppColor = pixel.getGreen();

 bOppColor = pixel.getBlue();

 t.setColorSearchSize(colorSearchSize * 2);

 t.findRows(image1, mousex-10, mousey-30); //find the

players

 System.out.println("Tracking new color. RGB=" + rOppColor

+ ":" + gOppColor + ":" + bOppColor);

 stage+=2;

 System.out.println("Players found. Please click the ball

to begin.");

 break;

 case 2: //null case (antiquated)

 case 3: ///the user selected the ball color

 c.centerAll(); //center all the players after the ball is

found

 rBallColor = pixel.getRed();

 gBallColor = pixel.getGreen();

 bBallColor = pixel.getBlue();

 System.out.println("Tracking new color. RGB=" + rBallColor

+ ":" + gBallColor + ":" + bBallColor);

 p.setColorSearchSize(colorSearchSize);

 p.calcBallSize(image1, rBallColor, gBallColor, bBallColor,

mousex-10, mousey-30, searchSize);

 stage++;

 break;

 default:

 //the default behavior is just to track a new ball color

 rBallColor = pixel.getRed();

 gBallColor = pixel.getGreen();

 bBallColor = pixel.getBlue();

 System.out.println("Tracking new color. RGB=" + rBallColor

+ ":" + gBallColor + ":" + bBallColor);

 }

 }

 }

 }

}

 Autonomous Foosball Table

Team FIFA (ECE 4007/L01) A29

/**

 * WriteS.java

 * This class is used to communicate with the motor control board across the serial connection on

the computer. It communicates at 115,200 bps,

 * 1 stop bit, 8 data bits, no parity bits, and no flow control.

 *

 * @author Team FIFA, ECE4884L01, Georgia Institute of Technology

 * @version 1.0, December 2007

*/

import java.io.*;

import java.util.*;

import javax.comm.*;

import java.awt.event.*;

import java.lang.String;

import java.lang.Character;

import java.lang.Math;

import javax.swing.Timer;

public class WriteS {

 static Enumeration portList;

 static CommPortIdentifier portId;

 static SerialPort serialPort;

 static OutputStream outputStream;

 static boolean outputBufferEmptyFlag = false;

 private boolean[] raised = new boolean[4];

 private boolean[] nextval = new boolean[4];

 private int[] timeleft = new int[4];

 private int[] packet = {1,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2}; //initialize packet, 2=not sets

 /**

 * Class constructor

 */

 public WriteS() {

 connect(); //connect to the motor control board

 for (int i = 0; i < 4; i++) { //loop through all rows, assuming all players are

down and have no future agenda

 timeleft[i] = 0;

 raised[i] = false;

 nextval[i] = false;

 }

 //this actionlistener is used in a state-variable configuration to tell the PWM

servos what to do "next" after

 //they complete their current action

 ActionListener checkservos = new ActionListener() {

 public void actionPerformed(ActionEvent evt) {

 for (int i = 0; i < 4; i++) {

 if (timeleft[i] > 1) { //there is still time left on the

last action

 timeleft[i] = timeleft[i] - 1; //decrement the timer

 } else if (timeleft[i] == 1) { //time has expired

 timeleft[i] = 0;

 raised[i] = ! raised[i];

 if (nextval[i] != raised[i]) { //perform the next

action, if applicable

 setLiftID(i,nextval[i]);

 }

 }

 }

 }

 };

 new Timer(10, checkservos).start(); //interrupt every 10ms

 }

 /**

 * Returns the kick status of a PWM servo

 *

 * @param ID The ID of the PWM servo (0-3)

 * @return A boolean indicating if the PWM is in the "up" position

 */

 Autonomous Foosball Table

Team FIFA (ECE 4007/L01) A30

 public boolean getRaised(int ID) {

 return raised[ID];

 }

 /**

 * Special command to the servo to set all rows in their initial position, against the

wall

 *

 * @see #centerAll

 */

 public void startPosition() {

 //Command packet: [10100000 00000010]

 packet[2] = 1;

 for (int i = 3; i <= 13; i++) {

 packet[i]=0;

 }

 packet[14] = 1;

 packet[15] = 0;

 sendPacket();

 }

 /**

 * Special command to the servo to set all PWM servos to the "up" position

 *

 * @see #setAllDown

 * @see #setOffenseDown

 * @see #setOffenseUp

 */

 public void setAllUp() {

 //Command packet: [10100000 00000011]

 nextval[0] = nextval[1] = nextval[2] = nextval[3] = raised[0] = raised[1] =

raised[2] = raised[3] = true;

 timeleft[0] = 5;

 timeleft[1] = 5;

 timeleft[2] = 5;

 timeleft[3] = 10;

 packet[2] = 1;

 for (int i = 3; i <= 13; i++) {

 packet[i]=0;

 }

 packet[14] = 1;

 packet[15] = 1;

 sendPacket();

 }

 /**

 * Special command to the servo to set just the midfield and striker PWM servos to the

"up" position

 *

 * @see #setAllUp

 * @see #setAllDown

 * @see #setOffenseDown

 */

 public void setOffenseUp() {

 //Command packet: [10100000 00000101]

 nextval[0] = nextval[1] = raised[0] = raised[1] = true;

 timeleft[0] = 5;

 timeleft[1] = 5;

 packet[2] = 1;

 for (int i = 3; i <= 12; i++) {

 packet[i]=0;

 }

 packet[13] = 1;

 packet[14] = 0;

 packet[15] = 1;

 sendPacket();

 }

 /**

 * Special command to the servo to set the midfield and striker PWM servos to the "down"

position

 Autonomous Foosball Table

Team FIFA (ECE 4007/L01) A31

 *

 * @see #setAllUp

 * @see #setAllDown

 * @see #setOffenseUp

 */

 public void setOffenseDown() {

 //Command packet: [10100000 00000110]

 nextval[0] = nextval[1] = raised[0] = raised[1] = false;

 timeleft[0] = 5;

 timeleft[1] = 5;

 packet[2] = 1;

 for (int i = 3; i <= 12; i++) {

 packet[i]=0;

 }

 packet[13] = 1;

 packet[14] = 1;

 packet[15] = 0;

 sendPacket();

 }

 /**

 * Special command to the servo to set all PWM servos to the "down" position

 *

 * @see #setAllUp

 * @see #setOffenseDown

 * @see #setOffenseUp

 */

 public void setAllDown() {

 //Command packet: [10100000 00000100]

 nextval[0] = nextval[1] = nextval[2] = nextval[3] = raised[0] = raised[1] =

raised[2] = raised[3] = false;

 timeleft[0] = timeleft[1] = timeleft[2] = 5;

 timeleft[3] = 10;

 packet[2] = 1;

 for (int i = 3; i <= 12; i++) {

 packet[i]=0;

 }

 packet[13] = 1;

 packet[14] = 0;

 packet[15] = 0;

 sendPacket();

 }

 /**

 * Special command to the servo to set all rows to a centered position

 *

 * @see #startPosition

 */

 public void centerAll() {

 //Command packet: [10100000 00000001]

 packet[2] = 1;

 for (int i = 3; i <= 14; i++) {

 packet[i]=0;

 }

 packet[15] = 1;

 sendPacket();

 }

 /**

 * Moves a row to a specified hexidecimal position

 *

 * @param ID The row number of the servo to move

 * @param pos The hexidecimal position the servo. Should be to between 0x000 and 0x3FF,

where the position is the same as that used

 * internally by the servo

 */

 public void moveHex(int ID, int pos) {

 packet[2]=0;

 packet[3]=0;

 packet[4]=ID/2;

 packet[5]=ID%2;

 Autonomous Foosball Table

Team FIFA (ECE 4007/L01) A32

 for (int i = 0; i <= 9; i++) {

 packet[i+6]=pos/((int)Math.pow(2,9-i));

 pos=pos%((int)Math.pow(2,9-i));

 }

 sendPacket();

 }

 /**

 * Public accessor indicating whether a PWM servo currently is in limbo, i.e. it is

executing a previous command

 *

 * @param ID The row number of the servo

 * @return A boolean indicating if the determined servo is currently moving

 */

 public boolean inLimbo(int ID) {

 return (timeleft[ID] > 0);

 }

 /**

 * Moves a row to a specified physical position. This function internally converts the

inch position to a servo position

 *

 * @param ID The row number of the servo to move

 * @param loc The number of inches away from the wall the row's stopper should end at

 */

 public void move(int ID, double loc) {

 packet[2]=0;

 packet[3]=0;

 packet[4]=ID/2;

 packet[5]=ID%2;

 //convert pos from physical position to servo position

 double ipp = 11.0*5.0/6.0/1024.0; //inches per postional bit

 int maxPos = 0;

 int start_pos = 0; //starting position of servo, varies by handle

 //we have to avoid over-pulling or over-pushing the servos past the physical

bounds of the table. if we do that,

 //the servos will go into a torque-overload setting, and shut down.

 switch (ID) {

 case 3:

 start_pos = 0xAF;

 maxPos = 0x350;

 break;

 case 2:

 start_pos = 0;

 maxPos = 0x3FF;

 break;

 case 1:

 start_pos = 0x130;

 maxPos = 0x2B0;

 break;

 case 0:

 start_pos = 0x8F;

 maxPos = 0x350;

 break;

 }

 int pos = (int)(loc/ipp) + start_pos;

 if (pos > maxPos) {

 pos = maxPos;

 } else if (pos < start_pos) {

 pos = start_pos;

 }

 //while the goalie does have specific physical bounds, we want to software limit

it as well, so as to avoid

 //going beyond the goal range.

 if (ID == 3 && pos == start_pos) {

 pos = 0x11E; //the physical servo location of the minimum goal value

 } else if (ID == 3 && pos == maxPos) {

 pos = 0x2E1; //the physical servo location of the maximum goal value

 Autonomous Foosball Table

Team FIFA (ECE 4007/L01) A33

 }

 //convert the positional data into a packet

 if (pos <= maxPos && pos >= start_pos) {

 for (int i = 0; i <= 9; i++) {

 packet[i+6]=pos/((int)Math.pow(2,9-i));

 pos=pos%((int)Math.pow(2,9-i));

 }

 sendPacket();

 }

 }

 /**

 * Sets a PWM servo in either the "up" or "down" position

 *

 * @param ID The row number of the servo to move

 * @param value A boolean indicating if the servo should be "up"

 */

 public void setLiftID(int ID, boolean value) {

 if (value) {

 setUp(ID);

 } else {

 setDown(ID);

 }

 }

 /**

 * Initiates a temporal function where the PWM servo first is lifted, and after a

timeout, is set back down

 *

 * @param ID The row number of the servo to kick

 */

 public void kick(int ID) {

 if (timeleft[ID] == 0) {

 setUp(ID);

 nextval[ID] = false;

 }

 }

 /**

 * Initiates a "kick and move" function. The PWM servo will be kicked at the current

position and as the lateral movement begins

 *

 * @param ID The row number to move and kick

 * @param pos The number of inches away from the wall the row's stopper should end at

 */

 public void kickhere(int ID, double pos) {

 move(ID, pos);

 kick(ID);

 }

 /**

 * Sets a PWM servo in to the "up" position

 *

 * @param ID The row number of the servo to move

 * @see #setDown

 */

 public void setUp(int ID) {

 nextval[ID] = true;

 if (! raised[ID]) {

 if (ID == 3) {

 timeleft[ID] = 10; //the goalie is a different (slower) servo

 } else {

 timeleft[ID] = 5; //default servo behavior

 }

 packet[2]=0;

 packet[3]=1;

 packet[4]=ID/2;

 packet[5]=ID%2;

 for (int i = 0; i <= 8; i++) {

 packet[i+6]=1;

 Autonomous Foosball Table

Team FIFA (ECE 4007/L01) A34

 }

 packet[15] = 1;

 sendPacket();

 }

 }

 /**

 * Sets a PWM servo in to the "down" position

 *

 * @param ID The row number of the servo to move

 * @see #setUp

 */

 public void setDown(int ID) {

 nextval[ID] = false;

 if (raised[ID]) {

 if (ID == 3) {

 timeleft[ID] = 10; //the goalie is a different (slower) servo

 } else {

 timeleft[ID] = 5; //default servo behavior

 }

 packet[2]=0;

 packet[3]=1;

 packet[4]=ID/2;

 packet[5]=ID%2;

 for (int i = 0; i <= 9; i++) {

 packet[i+6]=0;

 }

 sendPacket();

 }

 }

 /**

 * Closes the serial port

 */

 public void disconnect() {

 serialPort.close();

 }

 /**

 * Connects the serial port to the motor control board at 115,200 bps, 8 data

bits/packet, 1 stop bit, no parity, no flow control.

 */

 public void connect() {

 int defaultBaudRate = 115200;

 int defaultDatabits = SerialPort.DATABITS_8;

 int defaultStopbits = SerialPort.STOPBITS_1;

 int defaultParity = SerialPort.PARITY_NONE;

 boolean portFound = false;

 String defaultPort = "/dev/ttyS0"; //open serial port 0 in linux

 portList = CommPortIdentifier.getPortIdentifiers();

 while (portList.hasMoreElements()) {

 portId = (CommPortIdentifier) portList.nextElement();

 if (portId.getPortType() == CommPortIdentifier.PORT_SERIAL) {

 if (portId.getName().equals(defaultPort)) {

 System.out.println("Found port " + defaultPort);

 portFound = true;

 //try to open the serial port

 try {

 serialPort = (SerialPort) portId.open("Foosball",

2000);

 } catch (PortInUseException e) {

 System.out.println("Port in use.");

 continue;

 }

 try {

 outputStream = serialPort.getOutputStream();

 } catch (IOException e) {}

 Autonomous Foosball Table

Team FIFA (ECE 4007/L01) A35

 //there is a weird bug in the version of java that was

used, limiting the setSerialPortParams command

 //the workaround is to use up a little time internally

while we wait for the stream to settle.

 //if the stream does not settle in time, we attempt to re-

initiate the connection a second time below.

 //the workaround is done via the "System.out.print()"

commands, sending null characters to the command line

 try {

 System.out.print("");

 serialPort.setSerialPortParams(defaultBaudRate,

defaultDatabits, defaultStopbits, defaultParity);

 System.out.print("");

 } catch (Exception e) {}

 try {

 System.out.print("");

 serialPort.setSerialPortParams(defaultBaudRate,

defaultDatabits, defaultStopbits, defaultParity);

 System.out.print("");

 } catch (Exception e) {}

 try {

 serialPort.setFlowControlMode(SerialPort.FLOWCONTROL_NONE);

 } catch (UnsupportedCommOperationException e) {}

 try {

 serialPort.notifyOnOutputEmpty(true);

 } catch (Exception e) {

 System.out.println("Error setting event notification");

 System.out.println(e.toString());

 System.exit(-1);

 }

 }

 }

 }

 if (!portFound) {

 System.out.println("port " + defaultPort + " not found.");

 }

 }

 /**

 * Sends a packet across the serial port. The packet is a set of bits in the packet[]

array, consisting of 2-bytes.

 */

 public void sendPacket() {

 char packet_char = 0;

 byte[] packet_bytes =new byte[2];

 char i, shift_packet;

 //construct the first byte

 packet_char = 0;

 for (i=0; i < 8; i++) {

 shift_packet = (char)packet[i];

 shift_packet <<= (7-i);

 packet_char |= shift_packet;

 }

 packet_bytes[0] = (byte)(packet_char & 0xFF); //convert from unicode

 //construct the second byte

 packet_char = 0;

 for (i=8; i < 16; i++) {

 shift_packet = (char)packet[i];

 shift_packet <<= (15-i);

 packet_char |= shift_packet;

 }

 packet_bytes[1] = (byte)(packet_char & 0xFF); //convert from unicode

 try {

 outputStream.write(packet_bytes);

 } catch (IOException e) {

 System.out.println("SERIAL ERROR");

 Autonomous Foosball Table

Team FIFA (ECE 4007/L01) A36

 }

 }

}

 Autonomous Foosball Table

Team FIFA (ECE 4007/L01) B1

Appendix B

PIC18F4520 Servo Controller
Main Program and Library Source Code

 Autonomous Foosball Table

Team FIFA (ECE 4007/L01) B2

/**

 *

 * Team FIFA Servo Controller Program

 * File: servo.c

 *

 **

 *

 * Developed By: Michael Aeberhard (michael.aeberhard@gatech.edu)

 * Date: October 26th, 2007

 * Purpose: This program reads in data packets from the PC and carries out their

 * instructions to the servo motors that ultimatley manipulate the handles on

 * the foosball table.

 *

 ***/

#pragma config OSC = HSPLL, WDT = OFF, LVP = OFF

#include <p18f452.h> //Use PIC184520 naming conventions

#include <timers.h> //Timer functions for the PIC18F

#include <ax12.h> //Functions for AX12 servos

#include <pc_uart.h> //Functions for PC UART communication

//PIC macros

#define EnableInterrupts INTCONbits.GIEH = 1;

#define DisableInterrupts INTCONbits.GIEH = 0;

//Servo motor IDs for Foosball table

#define SERVO_ALL 0xFE

#define SERVO_KEEPER 0x04

#define SERVO_DEFENSE 0x03

#define SERVO_MIDFIELD 0x02

#define SERVO_OFFENSE 0x01

#define SERVO_TEST 0x01

//PWM Servo Macros

#define PWM_OFFENSE_CTRL PORTDbits.RD4

#define PWM_OFFENSE_DIR PORTDbits.RD5

#define PWM_MIDFIELD_CTRL PORTBbits.RB5

#define PWM_MIDFIELD_DIR PORTBbits.RB4

#define PWM_DEFENSE_CTRL PORTDbits.RD6

#define PWM_DEFENSE_DIR PORTDbits.RD7

#define PWM_KEEPER_CTRL PORTEbits.RE0

#define PWM_KEEPER_DIR PORTEbits.RE1

//Port macros

#define AX_DATA_DIRECTION PORTCbits.RC0

#define LED0 PORTAbits.RA0

#define LED1 PORTAbits.RA1

#define PButton1 PORTAbits.RA4

#define PButton2 PORTBbits.RB2

//Assignment macros

#define AX_DATA_RX 0

#define AX_DATA_TX 1

//function prototypes

void delay_1s(void);

void delay_5ms(void);

void servoCommand(void);

void specialCommand(void);

#pragma code

//Global Variables

unsigned char pc_buffer[2];

unsigned char pc_index;

unsigned char packetReady;

unsigned char packet[2];

unsigned char numberPackets;

char center[3] = { 0x1E, 0x00, 0x02 };

 Autonomous Foosball Table

Team FIFA (ECE 4007/L01) B3

//AX12 Start Position

char offenseStart[3] = { 0x1E, 0x8F, 0x00};

char midfieldStart[3] = { 0x1E, 0x30, 0x01 };

char defenseStart[3] = { 0x1E, 0x00, 0x00 };

char keeperStart[3] = { 0x1E, 0xAF, 0x00 };

char offenseEnd[3] = { 0x1E, 0xBF, 0x00};

char midfieldEnd[3] = { 0x1E, 0x30, 0x01 };

char defenseEnd[3] = { 0x1E, 0xFF, 0x03 };

char keeperEnd[3] = { 0x1E, 0xAF, 0x00 };

/***

 * Begin main program code

 **/

void main() {

 char movingSpeed[3] = { 0x20, 0xFF, 0x03 };

 char maxTorque[3] = { 0x22, 0xFF, 0x03 };

 unsigned char PCread[2] = { 0, 0 };

 int i;

 pc_index = 0;

 pc_buffer[0] = 0;

 pc_buffer[1] = 0;

 packetReady = 0;

 packet[0] = 0;

 packet[1] = 0;

 numberPackets = 0;

 //Setup Control Registers

 ADCON1 = 0x07; //Set all A/D ports as digital I/O

 LATA = 0;

 LATB = 0;

 LATE = 0;

 PORTA = 0;

 PORTB = 0;

 PORTE = 0;

 TRISA = 0b00010000; //Set RA4 as input, all others output

 TRISB = 0b00000101; //Input for RB0 and RB2

 TRISC = 0b11000110; //Set bit 7 and 6 of PortC as inputs, others as outputs

 TRISD = 0b00000000; //Set all bits of PortD as outputs

 TRISE = 0b00000000;

 //Timer2 Registers Prescaler = 16

 //TMR2 PostScaler = 16 - PR2 = 255

 //Freq = 200 Hz - Period = 4992 microseconds

 OpenTimer2(T2_POST_1_16 & T2_PS_1_16);

 PR2 = 195;

 TMR2 = 0;

 //SPI Setup for RS-232/UART communication

 PC_SetupSPI();

 PC_UART_SELECT = 1;

 PC_UART_SHUTDN = 1;

 //Setup internal USART for servo communication

 AX_SetupUSART();

 LED0 = 0;

 LED1 = 0;

 //Initialize the PWMs

 PWM_OFFENSE_DIR = 0;

 PWM_OFFENSE_CTRL = 0;

 PWM_MIDFIELD_DIR = 0;

 PWM_MIDFIELD_CTRL = 0;

 PWM_DEFENSE_DIR = 0;

 PWM_DEFENSE_CTRL = 0;

 PWM_KEEPER_DIR = 0;

 Autonomous Foosball Table

Team FIFA (ECE 4007/L01) B4

 PWM_KEEPER_CTRL = 0;

 AX_DATA_DIRECTION = AX_DATA_TX;

 //Set fast moving speed

 AX_TxPacket(SERVO_OFFENSE, I_WRITE_DATA, movingSpeed, 3);

 delay_5ms();

 delay_5ms();

 //Set high torque

 AX_TxPacket(SERVO_OFFENSE, I_WRITE_DATA, maxTorque, 3);

 delay_5ms();

 //Set fast moving speed

 AX_TxPacket(SERVO_MIDFIELD, I_WRITE_DATA, movingSpeed, 3);

 delay_5ms();

 delay_5ms();

 //Set high torque

 AX_TxPacket(SERVO_MIDFIELD, I_WRITE_DATA, maxTorque, 3);

 delay_5ms();

 //Set fast moving speed

 AX_TxPacket(SERVO_DEFENSE, I_WRITE_DATA, movingSpeed, 3);

 delay_5ms();

 delay_5ms();

 //Set high torque

 AX_TxPacket(SERVO_DEFENSE, I_WRITE_DATA, maxTorque, 3);

 delay_5ms();

 //Set fast moving speed

 AX_TxPacket(SERVO_KEEPER, I_WRITE_DATA, movingSpeed, 3);

 delay_5ms();

 delay_5ms();

 //Set high torque

 AX_TxPacket(SERVO_KEEPER, I_WRITE_DATA, maxTorque, 3);

 delay_5ms();

 while (1) {

 LED1 = !LED1;

 LED0 = 0;

 PB1 = PButton1;

 PB2 = PButton2;

 if (PORTBbits.RB0 == 0) {

 rxData = PC_ReadData();

 if (pc_index == 0) {

 if (rxData & 0x80) {

 pc_buffer[0] = rxData;

 pc_index = 1;

 }

 } else {

 pc_buffer[1] = rxData;

 pc_index = 0;

 packet[0] = pc_buffer[0];

 packet[1] = pc_buffer[1];

 packetReady = 1;

 }

 LED0 = 1;

 }

 if (packetReady == 1) {

 if ((packet[0] & 0x20) == 0x20) { //Check if its a special

command

 specialCommand();

 } else {

 servoCommand();

 }

 packetReady = 0;

 }

 }

}

 Autonomous Foosball Table

Team FIFA (ECE 4007/L01) B5

/**

 * specialCommand()

 *

 * Parses a special command packet and carries out the necessary servo action.

 *

 * Parameters: none

 * Returns: void

 **/

void specialCommand() {

 if (packet[1] == 0x01) { //center all AX12s

 AX_TxPacket(SERVO_ALL, I_WRITE_DATA, center, 3);

 } else if (packet[1] == 0x02) { //start position all AX12s

 AX_TxPacket(SERVO_OFFENSE, I_WRITE_DATA, offenseStart, 3);

 AX_TxPacket(SERVO_MIDFIELD, I_WRITE_DATA, midfieldStart, 3);

 AX_TxPacket(SERVO_DEFENSE, I_WRITE_DATA, defenseStart, 3);

 AX_TxPacket(SERVO_KEEPER, I_WRITE_DATA, keeperStart, 3);

 } else if (packet[1] == 0x03) { //kick all

 PWM_KEEPER_CTRL = 1;

 PWM_DEFENSE_CTRL = 1;

 PWM_MIDFIELD_CTRL = 1;

 PWM_OFFENSE_CTRL = 1;

 } else if (packet[1] == 0x04) { //idle all

 PWM_KEEPER_CTRL = 0;

 PWM_DEFENSE_CTRL = 0;

 PWM_MIDFIELD_CTRL = 0;

 PWM_OFFENSE_CTRL = 0;

 } else if (packet[1] == 0x05) { //kick offense/midfield

 PWM_MIDFIELD_CTRL = 1;

 PWM_OFFENSE_CTRL = 1;

 } else if (packet[1] == 0x06) { //idle offense/midfield

 PWM_MIDFIELD_CTRL = 0;

 PWM_OFFENSE_CTRL = 0;

 }

}

/**

 * servoCommand()

 *

 * Parses a servo command packet and carries out the necessary servo action.

 *

 * Parameters: none

 * Returns: void

 **/

void servoCommand() {

 unsigned char servoAddress = (char) (packet[0] & 0x0C) >> 2;

 unsigned char servoType = (packet[0] & 0x10) >> 4;

 unsigned char servoValue[2] = { (packet[0] & 0x03) , (packet[1] & 0xFF) };

 unsigned char control, direction;

 unsigned char data[3];

 if (servoType == 1) { //PWM servo

 control = servoValue[0] & 0x01;

 direction = (servoValue[0] & 0x02) >> 1;

 if (servoAddress == 3) {

 if (control == 1) {

 PWM_KEEPER_CTRL = 1;

 } else {

 PWM_KEEPER_CTRL = 0;

 }

 if (direction == 1) {

 PWM_KEEPER_DIR = 1;

 } else {

 PWM_KEEPER_DIR = 0;

 }

 } else if (servoAddress == 2) {

 if (control == 1) {

 PWM_DEFENSE_CTRL = 1;

 } else {

 PWM_DEFENSE_CTRL = 0;

 }

 Autonomous Foosball Table

Team FIFA (ECE 4007/L01) B6

 if (direction == 1) {

 PWM_DEFENSE_DIR = 1;

 } else {

 PWM_DEFENSE_DIR = 0;

 }

 } else if (servoAddress == 1) {

 if (control == 1) {

 PWM_MIDFIELD_CTRL = 1;

 } else {

 PWM_MIDFIELD_CTRL = 0;

 }

 if (direction == 1) {

 PWM_MIDFIELD_DIR = 1;

 } else {

 PWM_MIDFIELD_DIR = 0;

 }

 } else {

 if (control == 1) {

 PWM_OFFENSE_CTRL = 1;

 } else {

 PWM_OFFENSE_CTRL = 0;

 }

 if (direction == 1) {

 PWM_OFFENSE_DIR = 1;

 } else {

 PWM_OFFENSE_DIR = 0;

 }

 }

 } else { //AX-12 Servo

 data[0] = 0x1E;

 data[1] = servoValue[1];

 data[2] = servoValue[0];

 if (servoAddress == 3) {

 AX_TxPacket(SERVO_KEEPER, I_WRITE_DATA, data, 3);

 } else if (servoAddress == 2) {

 AX_TxPacket(SERVO_DEFENSE, I_WRITE_DATA, data, 3);

 } else if (servoAddress == 1) {

 AX_TxPacket(SERVO_MIDFIELD, I_WRITE_DATA, data, 3);

 } else {

 AX_TxPacket(SERVO_OFFENSE, I_WRITE_DATA, data, 3);

 }

 }

}

/**

 * delay_1s()

 *

 * Delays for 1 second.

 *

 * Parameters: none

 * Returns: void

 **/

void delay_1s() {

 unsigned char delayCount;

 delayCount = 200;

 while (delayCount > 0) {

 delay_5ms();

 delayCount--;

 }

}

/**

 * delay_5ms()

 *

 * Delays for 5 milliseconds.

 *

 * Parameters: none

 * Returns: void

 **/

void delay_5ms() {

 Autonomous Foosball Table

Team FIFA (ECE 4007/L01) B7

 while (PIR1bits.TMR2IF == 0) {

 ;

 }

 PIR1bits.TMR2IF = 0;

 TMR2 = 0;

}

 Autonomous Foosball Table

Team FIFA (ECE 4007/L01) B8

#ifndef __AX12_H

#define __AX12_H

/**

 *

 * Dynamixel AX-12 Servo Control Library

 * Filename: ax12.h

 *

 * THIS IS THE HEADER FILE

 *

 * Instructions: Include this file in your main program source code, and define

 * the following header directives, depending on which serial line is used to

 * interface with the AX12 data line.

 *

 *

 **

 *

 * Developed By: Michael Aeberhard (michael.aeberhard@gatech.edu)

 * Date: October 5th, 2007

 * Purpose: Easy-to-use function for controlling the AX-12 servos.

 *

 * Restrictions: This library assumes the use of the PIC18F4520 microcontroller

 * from Microchip along with the C18 Compiler.

 *

 **

 *

 * This file contains numerous functions that can be used to control a AX-12

 * servo motor. Some of the functions are more generic, while others are much

 * more specific. The original purpose of this library was to write a set of

 * useful functions to be used in the automated foosball table senior design

 * project by Michael Aeberhard, Shane Connelly, Evan Tarr, and Nardis Walker

 * at the Georiga Institute of Technology.

 *

 ***/

#include <p18f452.h> //Use PIC184520 naming conventions

//Servo motor control table addresses

//EEPROM

#define CT_ID 0x03

#define CT_BAUD_RATE 0x04

#define CT_RETURN_DELAY 0x05

#define CT_CW_ANGLELIMIT_L 0x06

#define CT_CW_ANGLELIMIT_H 0x07

#define CT_CCW_ANGLELIMIT_L 0x08

#define CT_CCW_ANGLELIMIT_H 0x09

#define CT_MAX_TORQUE_L 0x0E

#define CT_MAX_TORQUE_H 0x0F

#define CT_STATUS_RETURN 0x10

#define CT_ALARM_LED 0x11

//RAM

#define CT_TORQUE_ENABLE 0x18

#define CT_GOAL_POSITION_L 0x1E

#define CT_GOAL_POSITION_H 0x1F

#define CT_MOVING_SPEED_L 0x20

#define CT_MOVING_SPEED_H 0x21

#define CT_PRESENT_POS_L 0x24

#define CT_PRESENT_POS_H 0x25

#define CT_PRESENT_SPEED_L 0x26

#define CT_PRESENT_SPEED_H 0x27

#define CT_PRESENT_LOAD_L 0x28

#define CT_PRESENT_LOAD_H 0x29

#define CT_PRESENT_VOLTAGE 0x2A

#define CT_REGISTERED_INST 0x2C

#define CT_MOVING 0x2E

//Servo Motor Instruction Set

#define I_PING 0x01

#define I_READ_DATA 0x02

#define I_WRITE_DATA 0x03

#define I_REG_WRITE 0x04

 Autonomous Foosball Table

Team FIFA (ECE 4007/L01) B9

#define I_ACTION 0x05

#define I_RESET 0x06

#define I_SYNC_WRITE 0x07

//Function prototypes for all of the function in the library

//Please refer to the ax12.c file for instruction on how to use these functions

void AX_SetId(char, char);

void AX_Ping(char);

char* AX_RxPacket(void);

char AX_RxByte(void);

char AX_ByteRdy();

void AX_TxPacket(char, char, char*, char);

void AX_SendByte(char);

void AX_SetupUSART(void);

#endif

 Autonomous Foosball Table

Team FIFA (ECE 4007/L01) B10

/**

 *

 * Dynamixel AX-12 Servo Control Library

 * Filename: ax12.c

 *

 * THIS IS THE CODE FILE

 *

 **

 *

 * Developed By: Michael Aeberhard (michael.aeberhard@gatech.edu)

 * Date: October 5th, 2007

 * Purpose: Easy-to-use function for controlling the AX-12 servos.

 *

 * Restrictions: This library assumes the use of the PIC18F4520 microcontroller

 * from Microchip along with the C18 Compiler.

 *

 * Instructions for changing from USART to SPI.

 *

 **

 *

 * This file contains numerous functions that can be used to control a AX-12

 * servo motor. Some of the functions are more generic, while others are much

 * more specific. The original purpose of this library was to write a set of

 * useful functions to be used in the automated foosball table senior design

 * project by Michael Aeberhard, Shane Connelly, Evan Tarr, and Nardis Walker

 * at the Georiga Institute of Technology.

 *

 ***/

#include <p18f452.h> //Use PIC184520 naming conventions

#include <usart.h> //Functions for the on-chip EUSART

#include <ax12.h> //Prototype declarations for AX12 library

/**

 * AX_SetId()

 *

 * Changes the ID of an AX12 servo to a new value.

 *

 * Parameters:

 * oldid (char) - the old id # of the AX12 servo

 * newid (char) - the new id # to which to change to

 * Returns: void

 **/

void AX_SetId(char oldid, char newid) {

 char parameters[2], paramLength;

 parameters[0] = CT_ID;

 parameters[1] = newid;

 paramLength = 2;

 AX_TxPacket(oldid, I_WRITE_DATA, parameters, paramLength);

} //end AX_SetId()

/**

 * AX_Ping()

 *

 * Pings an AX12 servo for a status packet.

 *

 * Parameters:

 * id (char) - the id of the AX12 to ping

 * Returns: void

 **/

void AX_Ping(char id) {

 AX_TxPacket(id, I_PING, 0, 0);

} //end AX_Ping()

/**

 * AX_RxPacket()

 *

 * Receives a packet from an AX12 servo.

 *

 Autonomous Foosball Table

Team FIFA (ECE 4007/L01) B11

 * Parameters: none

 * Returns:

 * char* - pointer to the retrieved string

 **/

char* AX_RxPacket() {

 //char length, id, errorByte, checksum, i, curByte;

 char i, length;

 char packet[32];

 packet[0] = AX_RxByte(); //0xFF

 packet[1] = AX_RxByte(); //0xFF

 packet[2] = AX_RxByte(); //length

 packet[3] = AX_RxByte(); //error

 length = packet[3] + 3;

 for (i = 3; i < length; i++) {

 packet[i] = AX_RxByte();

 }

 return packet;

} //end AX_RxPacket()

/**

 * AX_RxByte()

 *

 * Receives a byte from an AX12 servo data line.

 *

 * Parameters: none

 * Returns: (char) the received byte

 **/

char AX_RxByte() {

 while (DataRdyUSART() == 0) {

 ;

 }

 return ReadUSART();

} //end AX_RxByte()

/**

 * AX_RxByteRdy()

 *

 * Determines if a byte from an AX12 servo is ready to be read.

 *

 * Parameters: none

 * Returns: (char) 1 if byte is ready, 0 if not

 **/

char AX_ByteRdy() {

 return DataRdyUSART();

} //end AX_ByteRdy()

/**

 * AX_TxPacket()

 *

 * Transmits a packet on the AX12 servo data line.

 *

 * Parameters:

 * id (char) - the ID of the AX12 which should receive the packet

 * instruction (char) - the instruction type of the packet

 * parameters (char*) - data array of the packet

 * paramLength (char) - length of the data array

 * Returns: void

 **/

void AX_TxPacket(char id, char instruction, char *parameters, char paramLength) {

 char length, i, checksum;

 length = 2 + paramLength;

 checksum = 0;

 AX_SendByte(0xFF); //required by AX12 protocol to initiate a packet

 AX_SendByte(0xFF); //required by AX12 protocol to initiate a packet

 AX_SendByte(id);

 checksum = checksum + id;

 AX_SendByte(length);

 checksum = checksum + length;

 Autonomous Foosball Table

Team FIFA (ECE 4007/L01) B12

 AX_SendByte(instruction);

 checksum = checksum + instruction;

 for (i = 0; i < paramLength; i++) {

 AX_SendByte(parameters[i]);

 checksum = checksum + parameters[i];

 }

 checksum = ~checksum;

 AX_SendByte(checksum);

 while(BusyUSART()) { //wait for last byte to be sent

 }

} //end AX_TxPacket()

/**

 * AX_SendByte()

 *

 * Sends a single byte onto the AX12 data line.

 *

 * Parameters:

 * toSend (char) - byte to send onto the data line

 * Returns: void

 **/

void AX_SendByte(char toSend) {

 while(BusyUSART()) { //wait for transmit register to be ready

 }

 WriteUSART(toSend);

} //AX_SendByte()

/**

 * AX_SetupUSART()

 *

 * Setup the PIC USART to transmit at 1 MBit/s.

 *

 * Parameters:

 * id (char) - the ID of the AX12 which should receive the packet

 * instruction (char) - the instruction type of the packet

 * parameters (char*) - data array of the packet

 * paramLength (char) - length of the data array

 * Returns: void

 **/

void AX_SetupUSART() {

 OpenUSART(USART_TX_INT_OFF & USART_RX_INT_OFF & USART_BRGH_HIGH & USART_EIGHT_BIT &

USART_ASYNCH_MODE, 9);

 TXSTAbits.BRGH = 1; //500 kbps

 SPBRG = 0x04;

} //end AX_SetupUSART()

 Autonomous Foosball Table

Team FIFA (ECE 4007/L01) B13

#ifndef __PC_UART_H

#define __PC_UART_H

/**

 *

 * PC SPI UART with MAXIM 3100 Library

 * Filename: pc_uart.h

 *

 * THIS IS THE HEADER FILE

 *

 **

 *

 * Developed By: Michael Aeberhard (michael.aeberhard@gatech.edu)

 * Date: October 11th, 2007

 * Purpose: Easy-to-use functions sending and receiving data via the MAXIM 3100

 * UART chip using the PIC's onboard SPI module.

 *

 * Restrictions: This library assumes the use of the PIC18F4520 microcontroller

 * from Microchip along with the C18 Compiler.

 *

 **

 *

 * This file contains numerous functions that can be used to communicate with

 * a PC. Some of the functions are more generic, while others are much

 * more specific. The original purpose of this library was to write a set of

 * useful functions to be used in the automated foosball table senior design

 * project by Michael Aeberhard, Shane Connelly, Evan Tarr, and Nardis Walker

 * at the Georiga Institute of Technology.

 *

 ***/

#include <p18f452.h> //Use PIC184520 naming conventions

//PIC macros

#define EnableInterrupts INTCONbits.GIEH = 1;

#define DisableInterrupts INTCONbits.GIEH = 0;

//MAX3100 Pin assignments to the PIC

#define PC_UART_SELECT PORTDbits.RD0

#define PC_UART_IRQ PORTBbits.RB0

#define PC_UART_SHUTDN PORTDbits.RD1

//Function prototypes for all of the function in the library

//Please refer to the pc_uart.c file for instruction on how to use these functions

void PC_SetupSPI(void);

void PC_WriteConfiguration(void);

void PC_WriteData(unsigned char);

char PC_ReadData(void);

void PC_ReadConfiguration(unsigned char*);

void PC_WriteString(unsigned char*, unsigned char);

#endif

 Autonomous Foosball Table

Team FIFA (ECE 4007/L01) B14

/**

 *

 * PC SPI UART with MAXIM 3100 Library

 * Filename: pc_uart.c

 *

 * THIS IS THE CODE FILE

 *

 **

 *

 * Developed By: Michael Aeberhard (michael.aeberhard@gatech.edu)

 * Date: October 11th, 2007

 * Purpose: Easy-to-use functions sending and receiving data via the MAXIM 3100

 * UART chip using the PIC's onboard SPI module.

 *

 * Restrictions: This library assumes the use of the PIC18F4520 microcontroller

 * from Microchip along with the C18 Compiler.

 *

 **

 *

 * This file contains numerous functions that can be used to communicate with

 * a PC. Some of the functions are more generic, while others are much

 * more specific. The original purpose of this library was to write a set of

 * useful functions to be used in the automated foosball table senior design

 * project by Michael Aeberhard, Shane Connelly, Evan Tarr, and Nardis Walker

 * at the Georiga Institute of Technology.

 *

 ***/

#include <p18f452.h> //Use PIC184520 naming conventions

#include <spi.h> //Functions for the on-chip SPI

#include <delays.h> //Functions for delays

#include <pc_uart.h> //Prototype declarations for PC UART library

/**

 * PC_SetupSPI()

 *

 * Sets up the SPI module to communicate at 1 MBit/s.

 *

 * Parameters: none

 * Returns: void

 **/

void PC_SetupSPI() {

 //SPI Setup for RS-232/UART communication

 OpenSPI(SPI_FOSC_4, MODE_00, SMPMID);

 Delay10TCYx(1);

 PC_WriteConfiguration();

} //end PC_SetupSPI()

/**

 * PC_WriteConfiguration()

 *

 * Send a write configuration to the MAX3100 UART chip.

 *

 * Parameters: none

 * Returns: void

 **/

void PC_WriteConfiguration() {

 unsigned char config[2] = { 0xCC, 0x00 };

 unsigned char read[2] = { 0, 0 };

 unsigned char i;

 PC_UART_SELECT = 0;

 for (i = 0; i < sizeof(config); i++) {

 while (WriteSPI(config[i]) == 0xFF) {

 ;

 }

 read[i] = SSPBUF;

 }

 PC_UART_SELECT = 1;

} //end PC_WriteConfiguration()

 Autonomous Foosball Table

Team FIFA (ECE 4007/L01) B15

/**

 * PC_ReadConfiguration()

 *

 * Receives a byte from an AX12 servo data line.

 *

 * Parameters:

 * *readResult - buffer to store the result of the configuration read.

 * Returns: void

 **/

void PC_ReadConfiguration(unsigned char *readResult) {

 unsigned char config[2] = { 0x40, 0x00 };

 unsigned char i;

 PC_UART_SELECT = 0;

 for (i = 0; i < sizeof(config); i++) {

 while (WriteSPI(config[i]) == 0xFF) {

 ;

 }

 readResult[i] = SSPBUF;

 }

 PC_UART_SELECT = 1;

} //end PC_ReadConfiguration()

/**

 * PC_WriteData()

 *

 * Outputs a byte for transmission to the UART.

 *

 * Parameters:

 * toWrite - byte to write

 * Returns: (char) 1 if byte is ready, 0 if not

 **/

void PC_WriteData(unsigned char toWrite) {

 unsigned char data[2] = { 0x80, toWrite };

 unsigned char read[2] = { 0, 0 };

 unsigned char i;

 PC_UART_SELECT = 0;

 for (i = 0; i < sizeof(data); i++) {

 while (WriteSPI(data[i]) == 0xFF) {

 ;

 }

 read[i] = SSPBUF;

 }

 PC_UART_SELECT = 1;

} //end PC_WriteData()

/**

 * PC_ReadData()

 *

 * Reads a byte from the UART.

 *

 * Parameters:

 * toWrite - byte to write

 * Returns: (char) 1 if byte is ready, 0 if not

 **/

char PC_ReadData() {

 unsigned char data[2] = { 0x00, 0x00 };

 unsigned char read[2] = { 0, 0 };

 unsigned char i;

 PC_UART_SELECT = 0;

 for (i = 0; i < sizeof(data); i++) {

 while (WriteSPI(data[i]) == 0xFF) {

 ;

 }

 read[i] = SSPBUF;

 }

 PC_UART_SELECT = 1;

 return read[1];

 Autonomous Foosball Table

Team FIFA (ECE 4007/L01) B16

} //end PC_ReadData()

/**

 * PC_WriteString()

 *

 * Outputs a string for transmission to the UART.

 *

 * Parameters:

 * *toWrite - pointer to the string to write

 * length - length of the string

 * Returns: void

 **/

void PC_WriteString(unsigned char *toWrite, unsigned char length) {

 unsigned char i;

 unsigned char readConfig[2] = { 0, 0 };

 int j;

 DisableInterrupts;

 for (i = 0; i < length; i++) {

 PC_WriteData(toWrite[i]);

 Delay10TCYx(100);

 while (PC_UART_IRQ == 1) {

 ;

 }

 Delay10TCYx(100);

 }

 EnableInterrupts;

} //end PC_WriteString()

 Autonomous Foosball Table

Team FIFA (ECE 4007/L01) C1

Appendix C

PIC12F615 PWM Controller Source Code

 Autonomous Foosball Table

Team FIFA (ECE 4007/L01) C2

;

; Team FIFA PWM Servo Controller

;

; Developed By: Michael Aeberhard

; Date: October 31st, 2007

; File: main.asm

; Purpose: Generate a PWM signal for a PWM module based on the input signals.

;

 list p=12F615

 #include P12F615.INC

 __config _LP_OSC & _PWRTE_OFF & _WDT_OFF & _CP_OFF

MOVLF macro literal,dest

 movlw literal

 movwf dest

 endm

;Constants

backCCP equ 0x1C ;9

backCCPL equ 2

idleCCP equ 0x0C ;12

idleCCPL equ 2

kickCCP equ 0x2C ;16

kickCCPL equ 3

PR2value equ 28

;;;;;;; Vectors ;;;

 org 0x0000 ;Reset vector

 goto Main

 org 0x0004 ;Interrupt vector

 goto $

;;;

Initial

 bcf STATUS,IRP

 bcf STATUS,RP1

 bsf STATUS,RP0

 bsf TRISIO,TRISIO0 ;GP0 as input

 bsf TRISIO,TRISIO1 ;GP1 as input

 clrf ANSEL

 MOVLF PR2value,PR2 ;Set PR2 for 50 Hz

 bsf TRISIO,TRISIO2 ;Set GP2 for PWM use

 bcf STATUS,RP0

 bcf PIR1,TMR2IF

 bcf T2CON,T2CKPS1 ;Set Timer 2 prescalar of 4

 bsf T2CON,T2CKPS0

 bsf T2CON,TMR2ON ;Turn Timer 2 on

 MOVLF idleCCP,CCP1CON ;Set for PWM mode and set duty cycle

 MOVLF idleCCPL,CCPR1L ;Set duty cycle of PWM

Test0 btfss PIR1,TMR2IF

 goto Test0

 bsf STATUS,RP0

 bcf TRISIO,TRISIO2

 bcf STATUS,RP0

 return

Main

 call Initial

MainLoop

 btfsc GPIO,0 ;Skip if GP0 is 0 (idle servo)

 call ServoKick ;GP0 is 1 - call to change duty cycle

 btfss GPIO,0 ;Skip if GP0 is 1 (kick action)

 call ServoIdle

 Autonomous Foosball Table

Team FIFA (ECE 4007/L01) C3

 goto MainLoop

ServoActive

 call ServoKick

 btfsc GPIO,1 ;Skip if GP1 is 0 (kick)

 call ServoBack ;Reverse servo (defend)

 btfss GPIO,1 ;Skip if GP1 is 1 (defend)

 call ServoKick

 goto MainLoop

ServoBack

 MOVLF backCCP,CCP1CON ;Set for PWM mode and set duty cycle

 MOVLF backCCPL,CCPR1L ;Set duty cycle of PWM

 return

ServoKick

 MOVLF kickCCP,CCP1CON ;Set for PWM mode and set duty cycle

 MOVLF kickCCPL,CCPR1L ;Set duty cycle of PWM

 return

ServoIdle

 MOVLF idleCCP,CCP1CON ;Set for PWM mode and set f duty cycle

 MOVLF idleCCPL,CCPR1L ;Set duty cycle of PWM

 return

END

 Autonomous Foosball Table

Team FIFA (ECE 4007/L01) D1

Appendix D

Servo Controller Board
Schematic and PCB Design

 Autonomous Foosball Table

Team FIFA (ECE 4007/L01) D2

 Autonomous Foosball Table

Team FIFA (ECE 4007/L01) D3

 Autonomous Foosball Table

Team FIFA (ECE 4007/L01) E1

Appendix E

Mechanical Design Drawings

 Autonomous Foosball Table

Team FIFA (ECE 4007/L01) E2

 Autonomous Foosball Table

Team FIFA (ECE 4007/L01) E3

 Autonomous Foosball Table

Team FIFA (ECE 4007/L01) E4

 Autonomous Foosball Table

Team FIFA (ECE 4007/L01) E5

 Autonomous Foosball Table

Team FIFA (ECE 4007/L01) E6

 Autonomous Foosball Table

Team FIFA (ECE 4007/L01) E7

 Autonomous Foosball Table

Team FIFA (ECE 4007/L01) E8

 Autonomous Foosball Table

Team FIFA (ECE 4007/L01) F1

Appendix F

Cost Analysis

 Autonomous Foosball Table

Team FIFA (ECE 4007/L01) F2

Cost and price calculations for a an automated foosball table with a selling price of $5,000.

Example of Cost and Price Calculations

Fringe Benefits 25% of labor

Overhead 55%
of materials, labor &
fringe

Sales & Marketing Expense 25% of selling price

Warranty & Support Expense 5% of selling price

Development Cost (Non-recurring Cost)

What it costs the company to develop the
product

Parts 1,600

Labor 22,400

Fringe Benefits, % of Labor 5,600

Subtotal 29,600

Overhead, % of Matl, Labor & Fringe 16,280

Total $45,880

Determination of Selling Price

What the customer pays the company for the finished product
Based on: 500 units

Parts Cost 710

Assembly Labor 25

Testing Labor 50

Total Labor 75

Fringe Benefits, % of Labor 19

Subtotal 804

Overhead, % of Matl, Labor & Fringe 442

Subtotal, Input Costs 1,246

Sales & Marketing Expense 1,250

Warranty & Support Expense 250

Amortized Development Costs 92

Subtotal, All Costs 2,838

Profit 2,162 43.2%

Selling Price $5,000

Total Revenue $2,500,000

Total Profit $1,081,214

 Autonomous Foosball Table

Team FIFA (ECE 4007/L01) G1

Appendix G

Prototype Development Gantt Chart

 Autonomous Foosball Table

Team FIFA (ECE 4007/L01) G2

Projected Prototype Development

Actual Prototype Development

